1 /**
2 * This module contains the garbage collector implementation.
3 *
4 * Copyright: Copyright (C) 2001-2007 Digital Mars, www.digitalmars.com.
5 * All rights reserved.
6 * License:
7 * This software is provided 'as-is', without any express or implied
8 * warranty. In no event will the authors be held liable for any damages
9 * arising from the use of this software.
10 *
11 * Permission is granted to anyone to use this software for any purpose,
12 * including commercial applications, and to alter it and redistribute it
13 * freely, in both source and binary form, subject to the following
14 * restrictions:
15 *
16 * o The origin of this software must not be misrepresented; you must not
17 * claim that you wrote the original software. If you use this software
18 * in a product, an acknowledgment in the product documentation would be
19 * appreciated but is not required.
20 * o Altered source versions must be plainly marked as such, and must not
21 * be misrepresented as being the original software.
22 * o This notice may not be removed or altered from any source
23 * distribution.
24 * Authors: Walter Bright, David Friedman, Sean Kelly
25 */
26
27 module rt.gc.cdgc.gc;
28
29 // D Programming Language Garbage Collector implementation
30
31 /************** Debugging ***************************/
32
33 //debug = COLLECT_PRINTF; // turn on printf's
34 //debug = PTRCHECK; // more pointer checking
35 //debug = PTRCHECK2; // thorough but slow pointer checking
36
37 /*************** Configuration *********************/
38
39 version = STACKGROWSDOWN; // growing the stack means subtracting from the stack pointer
40 // (use for Intel X86 CPUs)
41 // else growing the stack means adding to the stack pointer
42
43 /***************************************************/
44
45 import rt.gc.cdgc.bits: GCBits;
46 import rt.gc.cdgc.stats: GCStats, Stats;
47 import dynarray = rt.gc.cdgc.dynarray;
48 import os = rt.gc.cdgc.os;
49 import opts = rt.gc.cdgc.opts;
50
51 import cstdlib = tango.stdc.stdlib;
52 import cstring = tango.stdc.string;
53 import cstdio = tango.stdc.stdio;
54 debug(COLLECT_PRINTF) alias cstdio.printf printf;
55
56 /*
57 * This is a small optimization that proved it's usefulness. For small chunks
58 * or memory memset() seems to be slower (probably because of the call) that
59 * simply doing a simple loop to set the memory.
60 */
61 void memset(void* dst, int c, size_t n)
62 {
63 // This number (32) has been determined empirically
64 if (n > 32) {
65 cstring.memset(dst, c, n);
66 return;
67 }
68 auto p = cast(ubyte*)(dst);
69 while (n-- > 0)
70 *p++ = c;
71 }
72
73 version (GNU)
74 {
75 // BUG: The following import will likely not work, since the gcc
76 // subdirectory is elsewhere. Instead, perhaps the functions
77 // could be declared directly or some other resolution could
78 // be found.
79 static import gcc.builtins; // for __builtin_unwind_int
80 }
81
82 struct BlkInfo
83 {
84 void* base;
85 size_t size;
86 uint attr;
87 }
88
89 package enum BlkAttr : uint
90 {
91 FINALIZE = 0b0000_0001,
92 NO_SCAN = 0b0000_0010,
93 NO_MOVE = 0b0000_0100,
94 ALL_BITS = 0b1111_1111
95 }
96
97 package bool has_pointermap(uint attrs)
98 {
99 return !opts.options.conservative && !(attrs & BlkAttr.NO_SCAN);
100 }
101
102 private size_t round_up(size_t n, size_t to)
103 {
104 return (n + to - 1) / to;
105 }
106
107 private
108 {
109 alias void delegate(Object) DEvent;
110 alias void delegate( void*, void* ) scanFn;
111 enum { OPFAIL = ~cast(size_t)0 }
112
113 extern (C)
114 {
115 version (DigitalMars) version(OSX)
116 void _d_osx_image_init();
117
118 void* rt_stackBottom();
119 void* rt_stackTop();
120 void rt_finalize( void* p, bool det = true );
121 void rt_attachDisposeEvent(Object h, DEvent e);
122 bool rt_detachDisposeEventNoLock(Object h, DEvent e);
123 void rt_scanStaticData( scanFn scan );
124
125 void thread_init();
126 bool thread_needLock();
127 void thread_suspendAll();
128 void thread_resumeAll();
129 void thread_scanAll( scanFn fn, void* curStackTop = null );
130
131 void onOutOfMemoryError();
132 }
133 }
134
135
136 enum
137 {
138 PAGESIZE = 4096,
139 POOLSIZE = (4096*256),
140 }
141
142
143 enum
144 {
145 B_16,
146 B_32,
147 B_64,
148 B_128,
149 B_256,
150 B_512,
151 B_1024,
152 B_2048,
153 B_PAGE, // start of large alloc
154 B_PAGEPLUS, // continuation of large alloc
155 B_FREE, // free page
156 B_MAX
157 }
158
159
160 alias ubyte Bins;
161
162
163 struct List
164 {
165 List* next;
166 Pool* pool;
167 }
168
169
170 struct Range
171 {
172 void *pbot;
173 void *ptop;
174 int opCmp(in Range other)
175 {
176 if (pbot < other.pbot)
177 return -1;
178 else
179 return cast(int)(pbot > other.pbot);
180 }
181 int opEquals(in Range other)
182 {
183 return pbot is other.pbot;
184 }
185 }
186
187
188 const uint binsize[B_MAX] = [ 16,32,64,128,256,512,1024,2048,4096 ];
189 const uint notbinsize[B_MAX] = [ ~(16u-1),~(32u-1),~(64u-1),~(128u-1),~(256u-1),
190 ~(512u-1),~(1024u-1),~(2048u-1),~(4096u-1) ];
191
192
193 /* ============================ GC =============================== */
194
195
196 class GCLock {} // just a dummy so we can get a global lock
197
198
199 struct GC
200 {
201 // global lock
202 ClassInfo lock;
203
204 void* p_cache;
205 size_t size_cache;
206
207 // !=0 means don't scan stack
208 uint no_stack;
209 bool any_changes;
210 void* stack_bottom;
211 uint inited;
212 /// Turn off collections if > 0
213 int disabled;
214
215 // PID of the fork()ed process doing the mark() (0 if is not running)
216 int mark_proc_pid;
217
218 /// min(pool.baseAddr)
219 byte *min_addr;
220 /// max(pool.topAddr)
221 byte *max_addr;
222
223 /// Total heap memory
224 size_t total_mem;
225 /// Free heap memory
226 size_t free_mem;
227
228 /// Free list for each size
229 List*[B_MAX] free_list;
230
231 dynarray.DynArray!(void*) roots;
232 dynarray.DynArray!(Range) ranges;
233 dynarray.DynArray!(Pool*) pools;
234
235 Stats stats;
236
237 // Monitoring callbacks
238 void delegate() collect_begin_cb;
239 void delegate(int freed, int pagebytes) collect_end_cb;
240 }
241
242 // call locked if necessary
243 private T locked(T, alias Code)()
244 {
245 if (thread_needLock())
246 synchronized (gc.lock) return Code();
247 else
248 return Code();
249 }
250
251 private GC* gc;
252
253
254 bool collect_in_progress()
255 {
256 return gc.mark_proc_pid != 0;
257 }
258
259
260 bool Invariant()
261 {
262 assert (gc !is null);
263 if (gc.inited) {
264 size_t total_mem = 0;
265 size_t free_mem = 0;
266 for (size_t i = 0; i < gc.pools.length; i++) {
267 Pool* pool = gc.pools[i];
268 pool.Invariant();
269 if (i == 0)
270 assert(gc.min_addr == pool.baseAddr);
271 if (i + 1 < gc.pools.length)
272 assert(*pool < *gc.pools[i + 1]);
273 else if (i + 1 == gc.pools.length)
274 assert(gc.max_addr == pool.topAddr);
275 total_mem += pool.npages * PAGESIZE;
276 for (size_t pn = 0; pn < pool.npages; ++pn)
277 if (pool.pagetable[pn] == B_FREE)
278 free_mem += PAGESIZE;
279 }
280
281 gc.roots.Invariant();
282 gc.ranges.Invariant();
283
284 for (size_t i = 0; i < gc.ranges.length; i++) {
285 assert(gc.ranges[i].pbot);
286 assert(gc.ranges[i].ptop);
287 assert(gc.ranges[i].pbot <= gc.ranges[i].ptop);
288 }
289
290 for (size_t i = 0; i < B_PAGE; i++) {
291 for (List *list = gc.free_list[i]; list; list = list.next) {
292 auto pool = list.pool;
293 assert (pool !is null);
294 auto p = cast(byte*) list;
295 assert (p >= pool.baseAddr);
296 assert (p < pool.topAddr);
297 assert (pool.freebits.test((p - pool.baseAddr) / 16));
298 free_mem += binsize[i];
299 }
300 }
301 assert (gc.total_mem == total_mem);
302 assert (gc.free_mem == free_mem);
303 }
304 return true;
305 }
306
307
308 /**
309 * Find Pool that pointer is in.
310 * Return null if not in a Pool.
311 * Assume pools is sorted.
312 */
313 Pool* findPool(void* p)
314 {
315 if (p < gc.min_addr || p >= gc.max_addr)
316 return null;
317 if (gc.pools.length == 0)
318 return null;
319 if (gc.pools.length == 1)
320 return gc.pools[0];
321 /// The pooltable[] is sorted by address, so do a binary search
322 size_t low = 0;
323 size_t high = gc.pools.length - 1;
324 while (low <= high) {
325 size_t mid = (low + high) / 2;
326 auto pool = gc.pools[mid];
327 if (p < pool.baseAddr)
328 high = mid - 1;
329 else if (p >= pool.topAddr)
330 low = mid + 1;
331 else
332 return pool;
333 }
334 // Not found
335 return null;
336 }
337
338
339 /**
340 * Determine the base address of the block containing p. If p is not a gc
341 * allocated pointer, return null.
342 */
343 BlkInfo getInfo(void* p)
344 {
345 assert (p !is null);
346 Pool* pool = findPool(p);
347 if (pool is null)
348 return BlkInfo.init;
349 BlkInfo info;
350 info.base = pool.findBase(p);
351 if (info.base is null)
352 return BlkInfo.init;
353 info.size = pool.findSize(info.base);
354 size_t bit_i = (info.base - pool.baseAddr) / 16;
355 info.attr = getAttr(pool, bit_i);
356 if (has_pointermap(info.attr)) {
357 info.size -= size_t.sizeof; // PointerMap bitmask
358 // Points to the PointerMap bitmask pointer, not user data
359 if (p >= (info.base + info.size)) {
360 return BlkInfo.init;
361 }
362 }
363 if (opts.options.sentinel) {
364 info.base = sentinel_add(info.base);
365 // points to sentinel data, not user data
366 if (p < info.base || p >= sentinel_post(info.base))
367 return BlkInfo.init;
368 info.size -= SENTINEL_EXTRA;
369 }
370 return info;
371 }
372
373
374 /**
375 * Compute bin for size.
376 */
377 Bins findBin(size_t size)
378 {
379 Bins bin;
380 if (size <= 256)
381 {
382 if (size <= 64)
383 {
384 if (size <= 16)
385 bin = B_16;
386 else if (size <= 32)
387 bin = B_32;
388 else
389 bin = B_64;
390 }
391 else
392 {
393 if (size <= 128)
394 bin = B_128;
395 else
396 bin = B_256;
397 }
398 }
399 else
400 {
401 if (size <= 1024)
402 {
403 if (size <= 512)
404 bin = B_512;
405 else
406 bin = B_1024;
407 }
408 else
409 {
410 if (size <= 2048)
411 bin = B_2048;
412 else
413 bin = B_PAGE;
414 }
415 }
416 return bin;
417 }
418
419
420 /**
421 * Allocate a new pool of at least size bytes.
422 * Sort it into pools.
423 * Mark all memory in the pool as B_FREE.
424 * Return the actual number of bytes reserved or 0 on error.
425 */
426 size_t reserve(size_t size)
427 {
428 assert(size != 0);
429 size_t npages = round_up(size, PAGESIZE);
430 Pool* pool = newPool(npages);
431
432 if (!pool)
433 return 0;
434 return pool.npages * PAGESIZE;
435 }
436
437
438 /**
439 * Minimizes physical memory usage by returning free pools to the OS.
440 *
441 * If full is false, keep some pools alive if the resulting free memory would
442 * be too small.
443 */
444 void minimize(bool full = true)
445 {
446 // The shared mark bits of the freed pool might be used by the mark process
447 if (collect_in_progress())
448 return;
449
450 if (gc.pools.length == 0)
451 return;
452
453 for (size_t n = 0; n < gc.pools.length; n++)
454 {
455 Pool* pool = gc.pools[n];
456 size_t pn;
457 for (pn = 0; pn < pool.npages; pn++)
458 {
459 if (cast(Bins)pool.pagetable[pn] != B_FREE)
460 break;
461 }
462 if (pn < pool.npages)
463 continue;
464 // Free pool
465 size_t pool_size = pool.npages * PAGESIZE;
466 if (!full) {
467 double percent_free = (gc.free_mem - pool_size) * 100.0 /
468 (gc.total_mem - pool_size);
469 if (percent_free < opts.options.min_free)
470 continue; // not enough free, don't remove this pool
471 }
472 gc.total_mem -= pool_size;
473 gc.free_mem -= pool_size;
474 pool.Dtor();
475 cstdlib.free(pool);
476 gc.pools.remove_at(n);
477 n--;
478 }
479 gc.min_addr = gc.pools[0].baseAddr;
480 gc.max_addr = gc.pools[gc.pools.length - 1].topAddr;
481 }
482
483
484 /**
485 * Allocate a chunk of memory that is larger than a page.
486 * Return null if out of memory.
487 */
488 void* bigAlloc(size_t npages, out Pool* pool, size_t* pn, bool* collected)
489 {
490 *collected = false;
491 // This code could use some refinement when repeatedly
492 // allocating very large arrays.
493
494 void* find_block()
495 {
496 for (size_t n = 0; n < gc.pools.length; n++)
497 {
498 pool = gc.pools[n];
499 *pn = pool.allocPages(npages);
500 if (*pn != OPFAIL)
501 return pool.baseAddr + *pn * PAGESIZE;
502 }
503 return null;
504 }
505
506 void* alloc_more()
507 {
508 // Allocate new pool
509 pool = newPool(npages);
510 if (!pool)
511 return null; // let malloc handle the error
512 *pn = pool.allocPages(npages);
513 assert(*pn != OPFAIL);
514 return pool.baseAddr + *pn * PAGESIZE;
515 }
516
517 if (void* p = find_block())
518 return p;
519
520 if (gc.disabled)
521 return alloc_more();
522
523 // Try collecting
524 size_t freedpages = fullcollectshell();
525 *collected = true;
526 if (freedpages >= npages) {
527 if (void* p = find_block())
528 return p;
529 }
530
531 return alloc_more();
532 }
533
534
535 /**
536 * Allocate a new pool with at least npages in it.
537 * Sort it into pools.
538 * Return null if failed.
539 */
540 Pool *newPool(size_t npages)
541 {
542 // Minimum of POOLSIZE
543 if (npages < POOLSIZE/PAGESIZE)
544 npages = POOLSIZE/PAGESIZE;
545 else if (npages > POOLSIZE/PAGESIZE)
546 {
547 // Give us 150% of requested size, so there's room to extend
548 auto n = npages + (npages >> 1);
549 if (n < size_t.max/PAGESIZE)
550 npages = n;
551 }
552
553 // Allocate successively larger pools up to 8 megs
554 if (gc.pools.length)
555 {
556 size_t n = gc.pools.length;
557 if (n > 8)
558 n = 8; // cap pool size at 8 megs
559 n *= (POOLSIZE / PAGESIZE);
560 if (npages < n)
561 npages = n;
562 }
563
564 auto pool = cast(Pool*) cstdlib.calloc(1, Pool.sizeof);
565 if (pool is null)
566 return null;
567 pool.initialize(npages);
568 if (!pool.baseAddr)
569 {
570 pool.Dtor();
571 return null;
572 }
573
574 auto inserted_pool = *gc.pools.insert_sorted!("*a < *b")(pool);
575 if (inserted_pool is null) {
576 pool.Dtor();
577 return null;
578 }
579 assert (inserted_pool is pool);
580 gc.min_addr = gc.pools[0].baseAddr;
581 gc.max_addr = gc.pools[gc.pools.length - 1].topAddr;
582 size_t pool_size = pool.topAddr - pool.baseAddr;
583 gc.total_mem += pool_size;
584 gc.free_mem += pool_size;
585 return pool;
586 }
587
588
589 /**
590 * Allocate a page of bin's.
591 * Returns:
592 * 0 failed
593 */
594 int allocPage(Bins bin)
595 {
596 Pool* pool;
597 size_t pn;
598
599 for (size_t n = 0; n < gc.pools.length; n++)
600 {
601 pool = gc.pools[n];
602 pn = pool.allocPages(1);
603 if (pn != OPFAIL)
604 goto L1;
605 }
606 return 0; // failed
607
608 L1:
609 pool.pagetable[pn] = cast(ubyte)bin;
610
611 // Convert page to free list
612 size_t size = binsize[bin];
613 auto list_head = &gc.free_list[bin];
614
615 byte* p = pool.baseAddr + pn * PAGESIZE;
616 byte* ptop = p + PAGESIZE;
617 size_t bit_i = pn * (PAGESIZE / 16);
618 pool.freebits.set_group(bit_i, PAGESIZE / 16);
619 for (; p < ptop; p += size)
620 {
621 List* l = cast(List *) p;
622 l.next = *list_head;
623 l.pool = pool;
624 *list_head = l;
625 }
626 return 1;
627 }
628
629
630 /**
631 * Search a range of memory values and mark any pointers into the GC pool using
632 * type information (bitmask of pointer locations).
633 */
634 void mark_range(void *pbot, void *ptop, size_t* pm_bitmask)
635 {
636 // TODO: make our own assert because assert uses the GC
637 assert (pbot <= ptop);
638
639 const BITS_PER_WORD = size_t.sizeof * 8;
640
641 void **p1 = cast(void **)pbot;
642 void **p2 = cast(void **)ptop;
643 size_t pcache = 0;
644 bool changes = false;
645
646 size_t type_size = pm_bitmask[0];
647 size_t* pm_bits = pm_bitmask + 1;
648 bool has_type_info = type_size != 1 || pm_bits[0] != 1 || pm_bits[1] != 0;
649
650 //printf("marking range: %p -> %p\n", pbot, ptop);
651 for (; p1 + type_size <= p2; p1 += type_size) {
652 for (size_t n = 0; n < type_size; n++) {
653 // scan bit set for this word
654 if (has_type_info &&
655 !(pm_bits[n / BITS_PER_WORD] & (1 << (n % BITS_PER_WORD))))
656 continue;
657
658 void* p = *(p1 + n);
659
660 if (p < gc.min_addr || p >= gc.max_addr)
661 continue;
662
663 if ((cast(size_t)p & ~(PAGESIZE-1)) == pcache)
664 continue;
665
666 Pool* pool = findPool(p);
667 if (pool)
668 {
669 size_t offset = cast(size_t)(p - pool.baseAddr);
670 size_t bit_i = void;
671 size_t pn = offset / PAGESIZE;
672 Bins bin = cast(Bins)pool.pagetable[pn];
673
674 // Cache B_PAGE, B_PAGEPLUS and B_FREE lookups
675 if (bin >= B_PAGE)
676 pcache = cast(size_t)p & ~(PAGESIZE-1);
677
678 // Adjust bit to be at start of allocated memory block
679 if (bin <= B_PAGE)
680 bit_i = (offset & notbinsize[bin]) / 16;
681 else if (bin == B_PAGEPLUS)
682 {
683 do
684 {
685 --pn;
686 }
687 while (cast(Bins)pool.pagetable[pn] == B_PAGEPLUS);
688 bit_i = pn * (PAGESIZE / 16);
689 }
690 else // Don't mark bits in B_FREE pages
691 continue;
692
693 if (!pool.mark.test(bit_i))
694 {
695 pool.mark.set(bit_i);
696 if (!pool.noscan.test(bit_i))
697 {
698 pool.scan.set(bit_i);
699 changes = true;
700 }
701 }
702 }
703 }
704 }
705 if (changes)
706 gc.any_changes = true;
707 }
708
709 /**
710 * Return number of full pages free'd.
711 */
712 size_t fullcollectshell(bool early = false, bool force_block = false)
713 {
714 gc.stats.collection_started();
715 scope (exit)
716 gc.stats.collection_finished();
717
718 // The purpose of the 'shell' is to ensure all the registers
719 // get put on the stack so they'll be scanned
720 void *sp;
721 size_t result;
722 version (GNU)
723 {
724 gcc.builtins.__builtin_unwind_init();
725 sp = & sp;
726 }
727 else version(LDC)
728 {
729 version(X86)
730 {
731 uint eax,ecx,edx,ebx,ebp,esi,edi;
732 asm
733 {
734 mov eax[EBP], EAX ;
735 mov ecx[EBP], ECX ;
736 mov edx[EBP], EDX ;
737 mov ebx[EBP], EBX ;
738 mov ebp[EBP], EBP ;
739 mov esi[EBP], ESI ;
740 mov edi[EBP], EDI ;
741 mov sp[EBP], ESP ;
742 }
743 }
744 else version (X86_64)
745 {
746 ulong rax,rbx,rcx,rdx,rbp,rsi,rdi,r8,r9,r10,r11,r12,r13,r14,r15;
747 asm
748 {
749 movq rax[RBP], RAX ;
750 movq rbx[RBP], RBX ;
751 movq rcx[RBP], RCX ;
752 movq rdx[RBP], RDX ;
753 movq rbp[RBP], RBP ;
754 movq rsi[RBP], RSI ;
755 movq rdi[RBP], RDI ;
756 movq r8 [RBP], R8 ;
757 movq r9 [RBP], R9 ;
758 movq r10[RBP], R10 ;
759 movq r11[RBP], R11 ;
760 movq r12[RBP], R12 ;
761 movq r13[RBP], R13 ;
762 movq r14[RBP], R14 ;
763 movq r15[RBP], R15 ;
764 movq sp[RBP], RSP ;
765 }
766 }
767 else
768 {
769 static assert( false, "Architecture not supported." );
770 }
771 }
772 else
773 {
774 version (D_InlineAsm_X86)
775 {
776 asm
777 {
778 pushad ;
779 mov sp[EBP],ESP ;
780 }
781 }
782 else version (D_InlineAsm_X86_64)
783 {
784 asm
785 {
786 push RAX ;
787 push RBX ;
788 push RCX ;
789 push RDX ;
790 push RSI ;
791 push RDI ;
792 push RBP ;
793 push R8 ;
794 push R9 ;
795 push R10 ;
796 push R11 ;
797 push R12 ;
798 push R13 ;
799 push R14 ;
800 push R15 ;
801 push RAX ; // 16 byte align the stack
802 }
803 }
804 else
805 {
806 static assert( false, "Architecture not supported." );
807 }
808 }
809 result = fullcollect(sp, early, force_block);
810 version (GNU)
811 {
812 // nothing to do
813 }
814 else version(LDC)
815 {
816 // nothing to do
817 }
818 else
819 {
820 version (D_InlineAsm_X86_64)
821 {
822 asm
823 {
824 pop RAX ;
825 pop R15 ;
826 pop R14 ;
827 pop R13 ;
828 pop R12 ;
829 pop R11 ;
830 pop R10 ;
831 pop R9 ;
832 pop R8 ;
833 pop RBP ;
834 pop RDI ;
835 pop RSI ;
836 pop RDX ;
837 pop RCX ;
838 pop RBX ;
839 pop RAX ;
840 }
841 }
842 else
843 {
844 asm
845 {
846 popad ;
847 }
848 }
849 }
850 return result;
851 }
852
853
854 /**
855 *
856 */
857 size_t fullcollect(void *stackTop, bool early = false, bool force_block = false)
858 {
859 debug(COLLECT_PRINTF) printf("Gcx.fullcollect(early=%d)\n",
860 cast(int) early);
861
862 // We will block the mutator only if eager allocation is not used and this
863 // is not an early collection.
864 bool block = force_block || !opts.options.eager_alloc && !early;
865
866 // If there is a mark process running, check if it already finished. If
867 // that is the case, we lunch the sweep phase and hope enough memory is
868 // freed. If it's still running, either we block until the mark phase is
869 // done (and then sweep to finish the collection), or we tell the caller
870 // process no memory has been recovered (it will allocated more to fulfill
871 // the current request if eager allocation is used) and let the mark phase
872 // keep running in parallel.
873 if (collect_in_progress()) {
874 os.WRes r = os.wait_pid(gc.mark_proc_pid, block);
875 assert (r != os.WRes.ERROR);
876 switch (r) {
877 case os.WRes.DONE:
878 debug(COLLECT_PRINTF) printf("\t\tmark proc DONE (block=%d)\n",
879 cast(int) block);
880 gc.mark_proc_pid = 0;
881 return sweep();
882 case os.WRes.RUNNING:
883 debug(COLLECT_PRINTF) printf("\t\tmark proc RUNNING\n");
884 if (!block)
885 return 0;
886 // Something went wrong, if block is true, wait() should never
887 // returned RUNNING.
888 goto case os.WRes.ERROR;
889 case os.WRes.ERROR:
890 debug(COLLECT_PRINTF) printf("\t\tmark proc ERROR\n");
891 disable_fork(); // Try to keep going without forking
892 break;
893 }
894 }
895
896 // Notify the GC monitor, if any
897 if (gc.collect_begin_cb.funcptr) {
898 debug(COLLECT_PRINTF) printf("\t\tcalling monitor (begin)\n");
899 gc.collect_begin_cb();
900 }
901
902 // We always need to stop the world to make threads save the CPU registers
903 // in the stack and prepare themselves for thread_scanAll()
904 thread_suspendAll();
905 gc.stats.world_stopped();
906
907 // If forking is enabled, we fork() and start a new mark phase in the
908 // child. If the collection should not block, the parent process tells the
909 // caller no memory could be recycled immediately (if eager allocation is
910 // used, and this collection was triggered by an allocation, the caller
911 // should allocate more memory to fulfill the request). If the collection
912 // should block, the parent will wait for the mark phase to finish before
913 // returning control to the mutator, but other threads are restarted and
914 // may run in parallel with the mark phase (unless they allocate or use the
915 // GC themselves, in which case the global GC lock will stop them).
916 if (opts.options.fork) {
917 cstdio.fflush(null); // avoid duplicated FILE* output
918 os.pid_t child_pid = os.fork();
919 assert (child_pid != -1); // don't accept errors in non-release mode
920 switch (child_pid) {
921 case -1: // if fork() fails, fall-back to stop-the-world
922 disable_fork();
923 break;
924 case 0: // child process (i.e. the collectors mark phase)
925 mark(stackTop);
926 cstdlib.exit(0);
927 break; // bogus, will never reach here
928 default: // parent process (i.e. the mutator)
929 thread_resumeAll();
930 gc.stats.world_started();
931 if (!block) {
932 gc.mark_proc_pid = child_pid;
933 return 0;
934 }
935 os.WRes r = os.wait_pid(child_pid); // block until it finishes
936 assert (r == os.WRes.DONE);
937 debug(COLLECT_PRINTF) printf("\t\tmark proc DONE (block=%d)\n",
938 cast(int) block);
939 if (r == os.WRes.DONE)
940 return sweep();
941 debug(COLLECT_PRINTF) printf("\tmark() proc ERROR\n");
942 // If there was some error, try to keep going without forking
943 disable_fork();
944 // Re-suspend the threads to do the marking in this process
945 thread_suspendAll();
946 gc.stats.world_stopped();
947 }
948
949 }
950
951 // If we reach here, we are using the standard stop-the-world collection,
952 // either because fork was disabled in the first place, or because it was
953 // disabled because of some error.
954 mark(stackTop);
955 thread_resumeAll();
956 gc.stats.world_started();
957
958 return sweep();
959 }
960
961
962 /**
963 *
964 */
965 void mark(void *stackTop)
966 {
967 debug(COLLECT_PRINTF) printf("\tmark()\n");
968
969 gc.any_changes = false;
970
971 for (size_t n = 0; n < gc.pools.length; n++)
972 {
973 Pool* pool = gc.pools[n];
974 pool.mark.copy(&pool.freebits);
975 pool.scan.zero();
976 }
977
978 /// Marks a range of memory in conservative mode.
979 void mark_conservative_range(void* pbot, void* ptop)
980 {
981 mark_range(pbot, ptop, PointerMap.init.bits.ptr);
982 }
983
984 rt_scanStaticData(&mark_conservative_range);
985
986 if (!gc.no_stack)
987 {
988 // Scan stacks and registers for each paused thread
989 thread_scanAll(&mark_conservative_range, stackTop);
990 }
991
992 // Scan roots
993 debug(COLLECT_PRINTF) printf("scan roots[]\n");
994 mark_conservative_range(gc.roots.ptr, gc.roots.ptr + gc.roots.length);
995
996 // Scan ranges
997 debug(COLLECT_PRINTF) printf("scan ranges[]\n");
998 for (size_t n = 0; n < gc.ranges.length; n++)
999 {
1000 debug(COLLECT_PRINTF) printf("\t%x .. %x\n", gc.ranges[n].pbot, gc.ranges[n].ptop);
1001 mark_conservative_range(gc.ranges[n].pbot, gc.ranges[n].ptop);
1002 }
1003
1004 debug(COLLECT_PRINTF) printf("\tscan heap\n");
1005 while (gc.any_changes)
1006 {
1007 gc.any_changes = false;
1008 for (size_t n = 0; n < gc.pools.length; n++)
1009 {
1010 uint *bbase;
1011 uint *b;
1012 uint *btop;
1013
1014 Pool* pool = gc.pools[n];
1015
1016 bbase = pool.scan.base();
1017 btop = bbase + pool.scan.nwords;
1018 for (b = bbase; b < btop;)
1019 {
1020 Bins bin;
1021 size_t pn;
1022 size_t u;
1023 size_t bitm;
1024 byte* o;
1025
1026 bitm = *b;
1027 if (!bitm)
1028 {
1029 b++;
1030 continue;
1031 }
1032 *b = 0;
1033
1034 o = pool.baseAddr + (b - bbase) * 32 * 16;
1035 if (!(bitm & 0xFFFF))
1036 {
1037 bitm >>= 16;
1038 o += 16 * 16;
1039 }
1040 for (; bitm; o += 16, bitm >>= 1)
1041 {
1042 if (!(bitm & 1))
1043 continue;
1044
1045 pn = cast(size_t)(o - pool.baseAddr) / PAGESIZE;
1046 bin = cast(Bins)pool.pagetable[pn];
1047 if (bin < B_PAGE) {
1048 if (opts.options.conservative)
1049 mark_conservative_range(o, o + binsize[bin]);
1050 else {
1051 auto end_of_blk = cast(size_t**)(o +
1052 binsize[bin] - size_t.sizeof);
1053 size_t* pm_bitmask = *end_of_blk;
1054 mark_range(o, end_of_blk, pm_bitmask);
1055 }
1056 }
1057 else if (bin == B_PAGE || bin == B_PAGEPLUS)
1058 {
1059 if (bin == B_PAGEPLUS)
1060 {
1061 while (pool.pagetable[pn - 1] != B_PAGE)
1062 pn--;
1063 }
1064 u = 1;
1065 while (pn + u < pool.npages &&
1066 pool.pagetable[pn + u] == B_PAGEPLUS)
1067 u++;
1068
1069 size_t blk_size = u * PAGESIZE;
1070 if (opts.options.conservative)
1071 mark_conservative_range(o, o + blk_size);
1072 else {
1073 auto end_of_blk = cast(size_t**)(o + blk_size -
1074 size_t.sizeof);
1075 size_t* pm_bitmask = *end_of_blk;
1076 mark_range(o, end_of_blk, pm_bitmask);
1077 }
1078 }
1079 }
1080 }
1081 }
1082 }
1083 }
1084
1085
1086 /**
1087 *
1088 */
1089 size_t sweep()
1090 {
1091 // Free up everything not marked
1092 debug(COLLECT_PRINTF) printf("\tsweep\n");
1093 gc.p_cache = null;
1094 gc.size_cache = 0;
1095 gc.free_mem = 0; // will be recalculated
1096 size_t freedpages = 0;
1097 size_t freed = 0;
1098 for (size_t n = 0; n < gc.pools.length; n++)
1099 {
1100 Pool* pool = gc.pools[n];
1101 pool.clear_cache();
1102 uint* bbase = pool.mark.base();
1103 size_t pn;
1104 for (pn = 0; pn < pool.npages; pn++, bbase += PAGESIZE / (32 * 16))
1105 {
1106 Bins bin = cast(Bins)pool.pagetable[pn];
1107
1108 if (bin < B_PAGE)
1109 {
1110 auto size = binsize[bin];
1111 byte* p = pool.baseAddr + pn * PAGESIZE;
1112 byte* ptop = p + PAGESIZE;
1113 size_t bit_i = pn * (PAGESIZE/16);
1114 size_t bit_stride = size / 16;
1115
1116 version(none) // BUG: doesn't work because freebits() must also be cleared
1117 {
1118 // If free'd entire page
1119 if (bbase[0] == 0 && bbase[1] == 0 && bbase[2] == 0 &&
1120 bbase[3] == 0 && bbase[4] == 0 && bbase[5] == 0 &&
1121 bbase[6] == 0 && bbase[7] == 0)
1122 {
1123 for (; p < ptop; p += size, bit_i += bit_stride)
1124 {
1125 if (pool.finals.testClear(bit_i)) {
1126 if (opts.options.sentinel)
1127 rt_finalize(sentinel_add(p), false/*gc.no_stack > 0*/);
1128 else
1129 rt_finalize(p, false/*gc.no_stack > 0*/);
1130 }
1131 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1132
1133 if (opts.options.mem_stomp)
1134 memset(p, 0xF3, size);
1135 }
1136 pool.pagetable[pn] = B_FREE;
1137 freed += PAGESIZE;
1138 continue;
1139 }
1140 }
1141 for (; p < ptop; p += size, bit_i += bit_stride)
1142 {
1143 if (!pool.mark.test(bit_i))
1144 {
1145 if (opts.options.sentinel)
1146 sentinel_Invariant(sentinel_add(p));
1147
1148 pool.freebits.set(bit_i);
1149 if (pool.finals.testClear(bit_i)) {
1150 if (opts.options.sentinel)
1151 rt_finalize(sentinel_add(p), false/*gc.no_stack > 0*/);
1152 else
1153 rt_finalize(p, false/*gc.no_stack > 0*/);
1154 }
1155 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1156
1157 if (opts.options.mem_stomp)
1158 memset(p, 0xF3, size);
1159
1160 freed += size;
1161 }
1162 }
1163 }
1164 else if (bin == B_PAGE)
1165 {
1166 size_t bit_stride = PAGESIZE / 16;
1167 size_t bit_i = pn * bit_stride;
1168 if (!pool.mark.test(bit_i))
1169 {
1170 byte *p = pool.baseAddr + pn * PAGESIZE;
1171 if (opts.options.sentinel)
1172 sentinel_Invariant(sentinel_add(p));
1173 if (pool.finals.testClear(bit_i)) {
1174 if (opts.options.sentinel)
1175 rt_finalize(sentinel_add(p), false/*gc.no_stack > 0*/);
1176 else
1177 rt_finalize(p, false/*gc.no_stack > 0*/);
1178 }
1179 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1180
1181 debug(COLLECT_PRINTF) printf("\tcollecting big %p\n", p);
1182 pool.pagetable[pn] = B_FREE;
1183 pool.freebits.set_group(bit_i, PAGESIZE / 16);
1184 freedpages++;
1185 gc.free_mem += PAGESIZE;
1186 if (opts.options.mem_stomp)
1187 memset(p, 0xF3, PAGESIZE);
1188 while (pn + 1 < pool.npages && pool.pagetable[pn + 1] == B_PAGEPLUS)
1189 {
1190 pn++;
1191 pool.pagetable[pn] = B_FREE;
1192 bit_i += bit_stride;
1193 pool.freebits.set_group(bit_i, PAGESIZE / 16);
1194 freedpages++;
1195 gc.free_mem += PAGESIZE;
1196
1197 if (opts.options.mem_stomp)
1198 {
1199 p += PAGESIZE;
1200 memset(p, 0xF3, PAGESIZE);
1201 }
1202 }
1203 }
1204 }
1205 else if (bin == B_FREE) {
1206 gc.free_mem += PAGESIZE;
1207 }
1208 }
1209 }
1210
1211 // Zero buckets
1212 gc.free_list[] = null;
1213
1214 // Free complete pages, rebuild free list
1215 debug(COLLECT_PRINTF) printf("\tfree complete pages\n");
1216 size_t recoveredpages = 0;
1217 for (size_t n = 0; n < gc.pools.length; n++)
1218 {
1219 Pool* pool = gc.pools[n];
1220 for (size_t pn = 0; pn < pool.npages; pn++)
1221 {
1222 Bins bin = cast(Bins)pool.pagetable[pn];
1223 size_t bit_i;
1224 size_t u;
1225
1226 if (bin < B_PAGE)
1227 {
1228 size_t size = binsize[bin];
1229 size_t bit_stride = size / 16;
1230 size_t bit_base = pn * (PAGESIZE / 16);
1231 size_t bit_top = bit_base + (PAGESIZE / 16);
1232 byte* p;
1233
1234 bit_i = bit_base;
1235 for (; bit_i < bit_top; bit_i += bit_stride)
1236 {
1237 if (!pool.freebits.test(bit_i))
1238 goto Lnotfree;
1239 }
1240 pool.pagetable[pn] = B_FREE;
1241 pool.freebits.set_group(bit_base, PAGESIZE / 16);
1242 recoveredpages++;
1243 gc.free_mem += PAGESIZE;
1244 continue;
1245
1246 Lnotfree:
1247 p = pool.baseAddr + pn * PAGESIZE;
1248 for (u = 0; u < PAGESIZE; u += size)
1249 {
1250 bit_i = bit_base + u / 16;
1251 if (pool.freebits.test(bit_i))
1252 {
1253 assert ((p+u) >= pool.baseAddr);
1254 assert ((p+u) < pool.topAddr);
1255 List* list = cast(List*) (p + u);
1256 // avoid unnecesary writes (it really saves time)
1257 if (list.next != gc.free_list[bin])
1258 list.next = gc.free_list[bin];
1259 if (list.pool != pool)
1260 list.pool = pool;
1261 gc.free_list[bin] = list;
1262 gc.free_mem += binsize[bin];
1263 }
1264 }
1265 }
1266 }
1267 }
1268
1269 debug(COLLECT_PRINTF) printf("recovered pages = %d\n", recoveredpages);
1270 debug(COLLECT_PRINTF) printf("\tfree'd %u bytes, %u pages from %u pools\n",
1271 freed, freedpages, gc.pools.length);
1272
1273 // Notify the GC monitor, if any
1274 if (gc.collect_end_cb.funcptr) {
1275 debug(COLLECT_PRINTF) printf("\t\tcalling monitor (end)\n");
1276 gc.collect_end_cb(freed + freedpages * PAGESIZE,
1277 (freedpages + recoveredpages) * PAGESIZE);
1278 }
1279
1280 return freedpages + recoveredpages;
1281 }
1282
1283
1284 /**
1285 *
1286 */
1287 uint getAttr(Pool* pool, size_t bit_i)
1288 in
1289 {
1290 assert( pool );
1291 }
1292 body
1293 {
1294 uint attrs;
1295 if (pool.finals.test(bit_i))
1296 attrs |= BlkAttr.FINALIZE;
1297 if (pool.noscan.test(bit_i))
1298 attrs |= BlkAttr.NO_SCAN;
1299 // if (pool.nomove.test(bit_i))
1300 // attrs |= BlkAttr.NO_MOVE;
1301 return attrs;
1302 }
1303
1304
1305 /**
1306 *
1307 */
1308 void setAttr(Pool* pool, size_t bit_i, uint mask)
1309 in
1310 {
1311 assert( pool );
1312 }
1313 body
1314 {
1315 if (mask & BlkAttr.FINALIZE)
1316 {
1317 pool.finals.set(bit_i);
1318 }
1319 if (mask & BlkAttr.NO_SCAN)
1320 {
1321 pool.noscan.set(bit_i);
1322 }
1323 // if (mask & BlkAttr.NO_MOVE)
1324 // {
1325 // if (!pool.nomove.nbits)
1326 // pool.nomove.alloc(pool.mark.nbits);
1327 // pool.nomove.set(bit_i);
1328 // }
1329 }
1330
1331
1332 /**
1333 *
1334 */
1335 void clrAttr(Pool* pool, size_t bit_i, uint mask)
1336 in
1337 {
1338 assert( pool );
1339 }
1340 body
1341 {
1342 if (mask & BlkAttr.FINALIZE)
1343 pool.finals.clear(bit_i);
1344 if (mask & BlkAttr.NO_SCAN)
1345 pool.noscan.clear(bit_i);
1346 // if (mask & BlkAttr.NO_MOVE && pool.nomove.nbits)
1347 // pool.nomove.clear(bit_i);
1348 }
1349
1350
1351 void disable_fork()
1352 {
1353 // we have to disable all options that assume fork is enabled
1354 opts.options.fork = false;
1355 opts.options.eager_alloc = false;
1356 opts.options.early_collect = false;
1357 }
1358
1359
1360 void initialize()
1361 {
1362 int dummy;
1363 gc.stack_bottom = cast(char*)&dummy;
1364 opts.parse(cstdlib.getenv("D_GC_OPTS"));
1365 // If we are going to fork, make sure we have the needed OS support
1366 if (opts.options.fork)
1367 opts.options.fork = os.HAVE_SHARED && os.HAVE_FORK;
1368 // Disable fork()-related options if we don't have it
1369 if (!opts.options.fork)
1370 disable_fork();
1371 gc.lock = GCLock.classinfo;
1372 gc.inited = 1;
1373 setStackBottom(rt_stackBottom());
1374 gc.stats = Stats(gc);
1375 if (opts.options.prealloc_npools) {
1376 size_t pages = round_up(opts.options.prealloc_psize, PAGESIZE);
1377 for (size_t i = 0; i < opts.options.prealloc_npools; ++i)
1378 newPool(pages);
1379 }
1380 }
1381
1382
1383 // Launch a parallel collection if we don't have enough free memory available
1384 // (we have less than min_free% of the total heap free).
1385 void early_collect()
1386 {
1387 if ((!opts.options.early_collect || collect_in_progress()) && !gc.disabled)
1388 return;
1389 double percent_free = gc.free_mem * 100.0 / gc.total_mem;
1390 if (percent_free < opts.options.min_free)
1391 fullcollectshell(true);
1392 }
1393
1394
1395 //
1396 //
1397 //
1398 private void *malloc(size_t size, uint attrs, size_t* pm_bitmask)
1399 {
1400 assert(size != 0);
1401
1402 void *p = null;
1403 Bins bin;
1404
1405 gc.stats.malloc_started(size, attrs, pm_bitmask);
1406 scope (exit)
1407 gc.stats.malloc_finished(p);
1408
1409 if (opts.options.sentinel)
1410 size += SENTINEL_EXTRA;
1411
1412 bool has_pm = has_pointermap(attrs);
1413 if (has_pm)
1414 size += size_t.sizeof;
1415
1416 // Compute size bin
1417 // Cache previous binsize lookup - Dave Fladebo.
1418 static size_t lastsize = -1;
1419 static Bins lastbin;
1420 if (size == lastsize)
1421 bin = lastbin;
1422 else
1423 {
1424 bin = findBin(size);
1425 lastsize = size;
1426 lastbin = bin;
1427 }
1428
1429 Pool* pool = void;
1430 size_t bit_i = void;
1431 size_t capacity = void; // to figure out where to store the bitmask
1432 bool collected = false;
1433 if (bin < B_PAGE)
1434 {
1435 p = gc.free_list[bin];
1436 if (p is null)
1437 {
1438 if (!allocPage(bin) && !gc.disabled) // try to find a new page
1439 {
1440 if (!thread_needLock())
1441 {
1442 /* Then we haven't locked it yet. Be sure
1443 * and gc.lock for a collection, since a finalizer
1444 * may start a new thread.
1445 */
1446 synchronized (gc.lock)
1447 {
1448 fullcollectshell();
1449 }
1450 }
1451 else if (!fullcollectshell()) // collect to find a new page
1452 {
1453 //newPool(1);
1454 }
1455 collected = true;
1456 }
1457 if (!gc.free_list[bin] && !allocPage(bin))
1458 {
1459 newPool(1); // allocate new pool to find a new page
1460 // TODO: hint allocPage() to use the pool we just created
1461 int result = allocPage(bin);
1462 if (!result)
1463 onOutOfMemoryError();
1464 }
1465 p = gc.free_list[bin];
1466 }
1467 capacity = binsize[bin];
1468
1469 // Return next item from free list
1470 List* list = cast(List*) p;
1471 assert ((cast(byte*)list) >= list.pool.baseAddr);
1472 assert ((cast(byte*)list) < list.pool.topAddr);
1473 gc.free_list[bin] = list.next;
1474 pool = list.pool;
1475 bit_i = (p - pool.baseAddr) / 16;
1476 assert (pool.freebits.test(bit_i));
1477 pool.freebits.clear(bit_i);
1478 if (!(attrs & BlkAttr.NO_SCAN))
1479 memset(p + size, 0, capacity - size);
1480 if (opts.options.mem_stomp)
1481 memset(p, 0xF0, size);
1482 }
1483 else
1484 {
1485 size_t pn;
1486 size_t npages = round_up(size, PAGESIZE);
1487 p = bigAlloc(npages, pool, &pn, &collected);
1488 if (!p)
1489 onOutOfMemoryError();
1490 assert (pool !is null);
1491
1492 capacity = npages * PAGESIZE;
1493 bit_i = pn * (PAGESIZE / 16);
1494 pool.freebits.clear(bit_i);
1495 pool.pagetable[pn] = B_PAGE;
1496 if (npages > 1)
1497 memset(&pool.pagetable[pn + 1], B_PAGEPLUS, npages - 1);
1498 p = pool.baseAddr + pn * PAGESIZE;
1499 memset(cast(char *)p + size, 0, npages * PAGESIZE - size);
1500 if (opts.options.mem_stomp)
1501 memset(p, 0xF1, size);
1502
1503 }
1504
1505 // Store the bit mask AFTER SENTINEL_POST
1506 // TODO: store it BEFORE, so the bitmask is protected too
1507 if (has_pm) {
1508 auto end_of_blk = cast(size_t**)(p + capacity - size_t.sizeof);
1509 *end_of_blk = pm_bitmask;
1510 size -= size_t.sizeof;
1511 }
1512
1513 if (opts.options.sentinel) {
1514 size -= SENTINEL_EXTRA;
1515 p = sentinel_add(p);
1516 sentinel_init(p, size);
1517 }
1518
1519 if (attrs) {
1520 setAttr(pool, bit_i, attrs);
1521 assert (bin >= B_PAGE || !pool.freebits.test(bit_i));
1522 }
1523
1524 gc.free_mem -= capacity;
1525 if (collected) {
1526 // If there is not enough free memory (after a collection), allocate
1527 // a new pool big enough to have at least the min_free% of the total
1528 // heap free. If the collection left too much free memory, try to free
1529 // some empty pools.
1530 double percent_free = gc.free_mem * 100.0 / gc.total_mem;
1531 if (percent_free < opts.options.min_free) {
1532 auto pool_size = gc.total_mem * 1.0 / opts.options.min_free
1533 - gc.free_mem;
1534 newPool(round_up(cast(size_t)pool_size, PAGESIZE));
1535 }
1536 else
1537 minimize(false);
1538 }
1539 else
1540 early_collect();
1541
1542 return p;
1543 }
1544
1545
1546 //
1547 //
1548 //
1549 private void *calloc(size_t size, uint attrs, size_t* pm_bitmask)
1550 {
1551 assert(size != 0);
1552
1553 void *p = malloc(size, attrs, pm_bitmask);
1554 memset(p, 0, size);
1555 return p;
1556 }
1557
1558
1559 //
1560 //
1561 //
1562 private void *realloc(void *p, size_t size, uint attrs,
1563 size_t* pm_bitmask)
1564 {
1565 if (!size) {
1566 if (p)
1567 free(p);
1568 return null;
1569 }
1570
1571 if (p is null)
1572 return malloc(size, attrs, pm_bitmask);
1573
1574 Pool* pool = findPool(p);
1575 if (pool is null)
1576 return null;
1577
1578 // Set or retrieve attributes as appropriate
1579 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1580 if (attrs) {
1581 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1582 setAttr(pool, bit_i, attrs);
1583 }
1584 else
1585 attrs = getAttr(pool, bit_i);
1586
1587 void* blk_base_addr = pool.findBase(p);
1588 size_t blk_size = pool.findSize(p);
1589 bool has_pm = has_pointermap(attrs);
1590 size_t pm_bitmask_size = 0;
1591 if (has_pm) {
1592 pm_bitmask_size = size_t.sizeof;
1593 // Retrieve pointer map bit mask if appropriate
1594 if (pm_bitmask is null) {
1595 auto end_of_blk = cast(size_t**)(
1596 blk_base_addr + blk_size - size_t.sizeof);
1597 pm_bitmask = *end_of_blk;
1598 }
1599 }
1600
1601 if (opts.options.sentinel) {
1602 sentinel_Invariant(p);
1603 size_t sentinel_stored_size = *sentinel_size(p);
1604 if (sentinel_stored_size != size) {
1605 void* p2 = malloc(size, attrs, pm_bitmask);
1606 if (sentinel_stored_size < size)
1607 size = sentinel_stored_size;
1608 cstring.memcpy(p2, p, size);
1609 p = p2;
1610 }
1611 return p;
1612 }
1613
1614 size += pm_bitmask_size;
1615 if (blk_size >= PAGESIZE && size >= PAGESIZE) {
1616 auto psz = blk_size / PAGESIZE;
1617 auto newsz = round_up(size, PAGESIZE);
1618 if (newsz == psz)
1619 return p;
1620
1621 auto pagenum = (p - pool.baseAddr) / PAGESIZE;
1622
1623 if (newsz < psz) {
1624 // Shrink in place
1625 if (opts.options.mem_stomp)
1626 memset(p + size - pm_bitmask_size, 0xF2,
1627 blk_size - size - pm_bitmask_size);
1628 pool.freePages(pagenum + newsz, psz - newsz);
1629 auto new_blk_size = (PAGESIZE * newsz);
1630 gc.free_mem += blk_size - new_blk_size;
1631 // update the size cache, assuming that is very likely the
1632 // size of this block will be queried in the near future
1633 pool.update_cache(p, new_blk_size);
1634 if (has_pm) {
1635 auto end_of_blk = cast(size_t**)(blk_base_addr +
1636 new_blk_size - pm_bitmask_size);
1637 *end_of_blk = pm_bitmask;
1638 }
1639 return p;
1640 }
1641
1642 if (pagenum + newsz <= pool.npages) {
1643 // Attempt to expand in place
1644 for (size_t i = pagenum + psz; 1;) {
1645 if (i == pagenum + newsz) {
1646 if (opts.options.mem_stomp)
1647 memset(p + blk_size - pm_bitmask_size, 0xF0,
1648 size - blk_size - pm_bitmask_size);
1649 memset(pool.pagetable + pagenum + psz, B_PAGEPLUS,
1650 newsz - psz);
1651 auto new_blk_size = (PAGESIZE * newsz);
1652 gc.free_mem -= new_blk_size - blk_size;
1653 // update the size cache, assuming that is very
1654 // likely the size of this block will be queried in
1655 // the near future
1656 pool.update_cache(p, new_blk_size);
1657 if (has_pm) {
1658 auto end_of_blk = cast(size_t**)(
1659 blk_base_addr + new_blk_size - pm_bitmask_size);
1660 *end_of_blk = pm_bitmask;
1661 }
1662 early_collect();
1663 return p;
1664 }
1665 if (i == pool.npages)
1666 break;
1667 if (pool.pagetable[i] != B_FREE)
1668 break;
1669 i++;
1670 }
1671 }
1672 }
1673
1674 // if new size is bigger or less than half
1675 if (blk_size < size || blk_size > size * 2) {
1676 size -= pm_bitmask_size;
1677 blk_size -= pm_bitmask_size;
1678 void* p2 = malloc(size, attrs, pm_bitmask);
1679 if (blk_size < size)
1680 size = blk_size;
1681 cstring.memcpy(p2, p, size);
1682 p = p2;
1683 }
1684
1685 return p;
1686 }
1687
1688
1689 /**
1690 * Attempt to in-place enlarge the memory block pointed to by p by at least
1691 * min_size beyond its current capacity, up to a maximum of max_size. This
1692 * does not attempt to move the memory block (like realloc() does).
1693 *
1694 * Returns:
1695 * 0 if could not extend p,
1696 * total size of entire memory block if successful.
1697 */
1698 private size_t extend(void* p, size_t minsize, size_t maxsize)
1699 in
1700 {
1701 assert( minsize <= maxsize );
1702 }
1703 body
1704 {
1705 if (opts.options.sentinel)
1706 return 0;
1707
1708 Pool* pool = findPool(p);
1709 if (pool is null)
1710 return 0;
1711
1712 // Retrieve attributes
1713 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1714 uint attrs = getAttr(pool, bit_i);
1715
1716 void* blk_base_addr = pool.findBase(p);
1717 size_t blk_size = pool.findSize(p);
1718 bool has_pm = has_pointermap(attrs);
1719 size_t* pm_bitmask = null;
1720 size_t pm_bitmask_size = 0;
1721 if (has_pm) {
1722 pm_bitmask_size = size_t.sizeof;
1723 // Retrieve pointer map bit mask
1724 auto end_of_blk = cast(size_t**)(blk_base_addr +
1725 blk_size - size_t.sizeof);
1726 pm_bitmask = *end_of_blk;
1727
1728 minsize += size_t.sizeof;
1729 maxsize += size_t.sizeof;
1730 }
1731
1732 if (blk_size < PAGESIZE)
1733 return 0; // cannot extend buckets
1734
1735 auto psz = blk_size / PAGESIZE;
1736 auto minsz = round_up(minsize, PAGESIZE);
1737 auto maxsz = round_up(maxsize, PAGESIZE);
1738
1739 auto pagenum = (p - pool.baseAddr) / PAGESIZE;
1740
1741 size_t sz;
1742 for (sz = 0; sz < maxsz; sz++)
1743 {
1744 auto i = pagenum + psz + sz;
1745 if (i == pool.npages)
1746 break;
1747 if (pool.pagetable[i] != B_FREE)
1748 {
1749 if (sz < minsz)
1750 return 0;
1751 break;
1752 }
1753 }
1754 if (sz < minsz)
1755 return 0;
1756
1757 size_t new_size = (psz + sz) * PAGESIZE;
1758
1759 if (opts.options.mem_stomp)
1760 memset(p + blk_size - pm_bitmask_size, 0xF0,
1761 new_size - blk_size - pm_bitmask_size);
1762 memset(pool.pagetable + pagenum + psz, B_PAGEPLUS, sz);
1763 gc.p_cache = null;
1764 gc.size_cache = 0;
1765 gc.free_mem -= new_size - blk_size;
1766 // update the size cache, assuming that is very likely the size of this
1767 // block will be queried in the near future
1768 pool.update_cache(p, new_size);
1769
1770 if (has_pm) {
1771 new_size -= size_t.sizeof;
1772 auto end_of_blk = cast(size_t**)(blk_base_addr + new_size);
1773 *end_of_blk = pm_bitmask;
1774 }
1775
1776 early_collect();
1777
1778 return new_size;
1779 }
1780
1781
1782 //
1783 //
1784 //
1785 private void free(void *p)
1786 {
1787 assert (p);
1788
1789 Pool* pool;
1790 size_t pagenum;
1791 Bins bin;
1792 size_t bit_i;
1793
1794 // Find which page it is in
1795 pool = findPool(p);
1796 if (!pool) // if not one of ours
1797 return; // ignore
1798 if (opts.options.sentinel) {
1799 sentinel_Invariant(p);
1800 p = sentinel_sub(p);
1801 }
1802 pagenum = cast(size_t)(p - pool.baseAddr) / PAGESIZE;
1803 bit_i = cast(size_t)(p - pool.baseAddr) / 16;
1804 clrAttr(pool, bit_i, BlkAttr.ALL_BITS);
1805
1806 bin = cast(Bins)pool.pagetable[pagenum];
1807 if (bin == B_PAGE) // if large alloc
1808 {
1809 // Free pages
1810 size_t npages = 1;
1811 size_t n = pagenum;
1812 pool.freebits.set_group(bit_i, PAGESIZE / 16);
1813 while (++n < pool.npages && pool.pagetable[n] == B_PAGEPLUS)
1814 npages++;
1815 size_t size = npages * PAGESIZE;
1816 if (opts.options.mem_stomp)
1817 memset(p, 0xF2, size);
1818 pool.freePages(pagenum, npages);
1819 gc.free_mem += size;
1820 // just in case we were caching this pointer
1821 pool.clear_cache(p);
1822 }
1823 else
1824 {
1825 // Add to free list
1826 List* list = cast(List*) p;
1827
1828 if (opts.options.mem_stomp)
1829 memset(p, 0xF2, binsize[bin]);
1830
1831 list.next = gc.free_list[bin];
1832 list.pool = pool;
1833 gc.free_list[bin] = list;
1834 pool.freebits.set(bit_i);
1835 gc.free_mem += binsize[bin];
1836 }
1837 double percent_free = gc.free_mem * 100.0 / gc.total_mem;
1838 if (percent_free > opts.options.min_free)
1839 minimize(false);
1840 }
1841
1842
1843 /**
1844 * Determine the allocated size of pointer p. If p is an interior pointer
1845 * or not a gc allocated pointer, return 0.
1846 */
1847 private size_t sizeOf(void *p)
1848 {
1849 assert (p);
1850
1851 if (opts.options.sentinel)
1852 p = sentinel_sub(p);
1853
1854 Pool* pool = findPool(p);
1855 if (pool is null)
1856 return 0;
1857
1858 auto biti = cast(size_t)(p - pool.baseAddr) / 16;
1859 uint attrs = getAttr(pool, biti);
1860
1861 size_t size = pool.findSize(p);
1862 size_t pm_bitmask_size = 0;
1863 if (has_pointermap(attrs))
1864 pm_bitmask_size = size_t.sizeof;
1865
1866 if (opts.options.sentinel) {
1867 // Check for interior pointer
1868 // This depends on:
1869 // 1) size is a power of 2 for less than PAGESIZE values
1870 // 2) base of memory pool is aligned on PAGESIZE boundary
1871 if (cast(size_t)p & (size - 1) & (PAGESIZE - 1))
1872 return 0;
1873 return size - SENTINEL_EXTRA - pm_bitmask_size;
1874 }
1875 else {
1876 if (p == gc.p_cache)
1877 return gc.size_cache;
1878
1879 // Check for interior pointer
1880 // This depends on:
1881 // 1) size is a power of 2 for less than PAGESIZE values
1882 // 2) base of memory pool is aligned on PAGESIZE boundary
1883 if (cast(size_t)p & (size - 1) & (PAGESIZE - 1))
1884 return 0;
1885
1886 gc.p_cache = p;
1887 gc.size_cache = size - pm_bitmask_size;
1888
1889 return gc.size_cache;
1890 }
1891 }
1892
1893
1894 /**
1895 * Verify that pointer p:
1896 * 1) belongs to this memory pool
1897 * 2) points to the start of an allocated piece of memory
1898 * 3) is not on a free list
1899 */
1900 private void checkNoSync(void *p)
1901 {
1902 assert(p);
1903
1904 if (opts.options.sentinel)
1905 sentinel_Invariant(p);
1906 debug (PTRCHECK)
1907 {
1908 Pool* pool;
1909 size_t pagenum;
1910 Bins bin;
1911 size_t size;
1912
1913 if (opts.options.sentinel)
1914 p = sentinel_sub(p);
1915 pool = findPool(p);
1916 assert(pool);
1917 pagenum = cast(size_t)(p - pool.baseAddr) / PAGESIZE;
1918 bin = cast(Bins)pool.pagetable[pagenum];
1919 assert(bin <= B_PAGE);
1920 size = binsize[bin];
1921 assert((cast(size_t)p & (size - 1)) == 0);
1922
1923 debug (PTRCHECK2)
1924 {
1925 if (bin < B_PAGE)
1926 {
1927 // Check that p is not on a free list
1928 for (List* list = gc.free_list[bin]; list; list = list.next)
1929 {
1930 assert(cast(void*)list != p);
1931 }
1932 }
1933 }
1934 }
1935 }
1936
1937
1938 //
1939 //
1940 //
1941 private void setStackBottom(void *p)
1942 {
1943 version (STACKGROWSDOWN)
1944 {
1945 //p = (void *)((uint *)p + 4);
1946 if (p > gc.stack_bottom)
1947 {
1948 gc.stack_bottom = p;
1949 }
1950 }
1951 else
1952 {
1953 //p = (void *)((uint *)p - 4);
1954 if (p < gc.stack_bottom)
1955 {
1956 gc.stack_bottom = cast(char*)p;
1957 }
1958 }
1959 }
1960
1961
1962 /**
1963 * Retrieve statistics about garbage collection.
1964 * Useful for debugging and tuning.
1965 */
1966 private GCStats getStats()
1967 {
1968 GCStats stats;
1969 size_t psize = 0;
1970 size_t usize = 0;
1971 size_t flsize = 0;
1972
1973 size_t n;
1974 size_t bsize = 0;
1975
1976 for (n = 0; n < gc.pools.length; n++)
1977 {
1978 Pool* pool = gc.pools[n];
1979 psize += pool.npages * PAGESIZE;
1980 for (size_t j = 0; j < pool.npages; j++)
1981 {
1982 Bins bin = cast(Bins)pool.pagetable[j];
1983 if (bin == B_FREE)
1984 stats.freeblocks++;
1985 else if (bin == B_PAGE)
1986 stats.pageblocks++;
1987 else if (bin < B_PAGE)
1988 bsize += PAGESIZE;
1989 }
1990 }
1991
1992 for (n = 0; n < B_PAGE; n++)
1993 {
1994 for (List* list = gc.free_list[n]; list; list = list.next)
1995 flsize += binsize[n];
1996 }
1997
1998 usize = bsize - flsize;
1999
2000 stats.poolsize = psize;
2001 stats.usedsize = bsize - flsize;
2002 stats.freelistsize = flsize;
2003 return stats;
2004 }
2005
2006 /******************* weak-reference support *********************/
2007
2008 private struct WeakPointer
2009 {
2010 Object reference;
2011
2012 void ondestroy(Object r)
2013 {
2014 assert(r is reference);
2015 // lock for memory consistency (parallel readers)
2016 // also ensures that weakpointerDestroy can be called while another
2017 // thread is freeing the reference with "delete"
2018 return locked!(void, () {
2019 reference = null;
2020 })();
2021 }
2022 }
2023
2024 /**
2025 * Create a weak pointer to the given object.
2026 * Returns a pointer to an opaque struct allocated in C memory.
2027 */
2028 void* weakpointerCreate( Object r )
2029 {
2030 if (r)
2031 {
2032 // must be allocated in C memory
2033 // 1. to hide the reference from the GC
2034 // 2. the GC doesn't scan delegates added by rt_attachDisposeEvent
2035 // for references
2036 auto wp = cast(WeakPointer*)(cstdlib.malloc(WeakPointer.sizeof));
2037 if (!wp)
2038 onOutOfMemoryError();
2039 wp.reference = r;
2040 rt_attachDisposeEvent(r, &wp.ondestroy);
2041 return wp;
2042 }
2043 return null;
2044 }
2045
2046 /**
2047 * Destroy a weak pointer returned by weakpointerCreate().
2048 * If null is passed, nothing happens.
2049 */
2050 void weakpointerDestroy( void* p )
2051 {
2052 if (p)
2053 {
2054 auto wp = cast(WeakPointer*)p;
2055 // must be extra careful about the GC or parallel threads
2056 // finalizing the reference at the same time
2057 return locked!(void, () {
2058 if (wp.reference)
2059 rt_detachDisposeEventNoLock(wp.reference, &wp.ondestroy);
2060 })();
2061 cstdlib.free(wp);
2062 }
2063 }
2064
2065 /**
2066 * Query a weak pointer and return either the object passed to
2067 * weakpointerCreate, or null if it was free'd in the meantime.
2068 * If null is passed, null is returned.
2069 */
2070 Object weakpointerGet( void* p )
2071 {
2072 if (p)
2073 {
2074 // NOTE: could avoid the lock by using Fawzi style GC counters but
2075 // that'd require core.sync.Atomic and lots of care about memory
2076 // consistency it's an optional optimization see
2077 // http://dsource.org/projects/tango/browser/trunk/user/tango/core/Lifetime.d?rev=5100#L158
2078 return locked!(Object, () {
2079 return (cast(WeakPointer*)p).reference;
2080 })();
2081 }
2082 }
2083
2084
2085 /* ============================ Pool =============================== */
2086
2087
2088 struct Pool
2089 {
2090 byte* baseAddr;
2091 byte* topAddr;
2092 GCBits mark; // entries already scanned, or should not be scanned
2093 GCBits scan; // entries that need to be scanned
2094 GCBits freebits; // entries that are on the free list
2095 GCBits finals; // entries that need finalizer run on them
2096 GCBits noscan; // entries that should not be scanned
2097
2098 size_t npages;
2099 ubyte* pagetable;
2100
2101 /// Cache for findSize()
2102 size_t cached_size;
2103 void* cached_ptr;
2104
2105 void clear_cache(void* ptr = null)
2106 {
2107 if (ptr is null || ptr is this.cached_ptr) {
2108 this.cached_ptr = null;
2109 this.cached_size = 0;
2110 }
2111 }
2112
2113 void update_cache(void* ptr, size_t size)
2114 {
2115 this.cached_ptr = ptr;
2116 this.cached_size = size;
2117 }
2118
2119 void initialize(size_t npages)
2120 {
2121 size_t poolsize = npages * PAGESIZE;
2122 assert(poolsize >= POOLSIZE);
2123 baseAddr = cast(byte *) os.alloc(poolsize);
2124
2125 // Some of the code depends on page alignment of memory pools
2126 assert((cast(size_t)baseAddr & (PAGESIZE - 1)) == 0);
2127
2128 if (!baseAddr)
2129 {
2130 npages = 0;
2131 poolsize = 0;
2132 }
2133 topAddr = baseAddr + poolsize;
2134
2135 size_t nbits = cast(size_t)poolsize / 16;
2136
2137 // if the GC will run in parallel in a fork()ed process, we need to
2138 // share the mark bits
2139 os.Vis vis = os.Vis.PRIV;
2140 if (opts.options.fork)
2141 vis = os.Vis.SHARED;
2142 mark.alloc(nbits, vis); // shared between mark and sweep
2143 freebits.alloc(nbits); // not used by the mark phase
2144 scan.alloc(nbits); // only used in the mark phase
2145 finals.alloc(nbits); // not used by the mark phase
2146 noscan.alloc(nbits); // mark phase *MUST* have a snapshot
2147
2148 // all is free when we start
2149 freebits.set_all();
2150
2151 // avoid accidental sweeping of new pools while using eager allocation
2152 if (collect_in_progress())
2153 mark.set_all();
2154
2155 pagetable = cast(ubyte*) cstdlib.malloc(npages);
2156 if (!pagetable)
2157 onOutOfMemoryError();
2158 memset(pagetable, B_FREE, npages);
2159
2160 this.npages = npages;
2161 }
2162
2163
2164 void Dtor()
2165 {
2166 if (baseAddr)
2167 {
2168 int result;
2169
2170 if (npages)
2171 {
2172 result = os.dealloc(baseAddr, npages * PAGESIZE);
2173 assert(result);
2174 npages = 0;
2175 }
2176
2177 baseAddr = null;
2178 topAddr = null;
2179 }
2180 // See Gcx.Dtor() for the rationale of the null check.
2181 if (pagetable)
2182 cstdlib.free(pagetable);
2183
2184 os.Vis vis = os.Vis.PRIV;
2185 if (opts.options.fork)
2186 vis = os.Vis.SHARED;
2187 mark.Dtor(vis);
2188 freebits.Dtor();
2189 scan.Dtor();
2190 finals.Dtor();
2191 noscan.Dtor();
2192 }
2193
2194
2195 bool Invariant()
2196 {
2197 return true;
2198 }
2199
2200
2201 invariant
2202 {
2203 //mark.Invariant();
2204 //scan.Invariant();
2205 //freebits.Invariant();
2206 //finals.Invariant();
2207 //noscan.Invariant();
2208
2209 if (baseAddr)
2210 {
2211 //if (baseAddr + npages * PAGESIZE != topAddr)
2212 //printf("baseAddr = %p, npages = %d, topAddr = %p\n", baseAddr, npages, topAddr);
2213 assert(baseAddr + npages * PAGESIZE == topAddr);
2214 }
2215
2216 for (size_t i = 0; i < npages; i++)
2217 {
2218 Bins bin = cast(Bins)pagetable[i];
2219 assert(bin < B_MAX);
2220 }
2221 }
2222
2223
2224 /**
2225 * Allocate n pages from Pool.
2226 * Returns OPFAIL on failure.
2227 */
2228 size_t allocPages(size_t n)
2229 {
2230 size_t i;
2231 size_t n2;
2232
2233 n2 = n;
2234 for (i = 0; i < npages; i++)
2235 {
2236 if (pagetable[i] == B_FREE)
2237 {
2238 if (--n2 == 0)
2239 return i - n + 1;
2240 }
2241 else
2242 n2 = n;
2243 }
2244 return OPFAIL;
2245 }
2246
2247
2248 /**
2249 * Free npages pages starting with pagenum.
2250 */
2251 void freePages(size_t pagenum, size_t npages)
2252 {
2253 memset(&pagetable[pagenum], B_FREE, npages);
2254 }
2255
2256
2257 /**
2258 * Find base address of block containing pointer p.
2259 * Returns null if the pointer doesn't belong to this pool
2260 */
2261 void* findBase(void *p)
2262 {
2263 size_t offset = cast(size_t)(p - this.baseAddr);
2264 size_t pagenum = offset / PAGESIZE;
2265 Bins bin = cast(Bins)this.pagetable[pagenum];
2266 // Adjust bit to be at start of allocated memory block
2267 if (bin <= B_PAGE)
2268 return this.baseAddr + (offset & notbinsize[bin]);
2269 if (bin == B_PAGEPLUS) {
2270 do {
2271 --pagenum, offset -= PAGESIZE;
2272 } while (cast(Bins)this.pagetable[pagenum] == B_PAGEPLUS);
2273 return this.baseAddr + (offset & (offset.max ^ (PAGESIZE-1)));
2274 }
2275 // we are in a B_FREE page
2276 return null;
2277 }
2278
2279
2280 /**
2281 * Find size of pointer p.
2282 * Returns 0 if p doesn't belong to this pool if if it's block size is less
2283 * than a PAGE.
2284 */
2285 size_t findSize(void *p)
2286 {
2287 size_t pagenum = cast(size_t)(p - this.baseAddr) / PAGESIZE;
2288 Bins bin = cast(Bins)this.pagetable[pagenum];
2289 if (bin != B_PAGE)
2290 return binsize[bin];
2291 if (this.cached_ptr == p)
2292 return this.cached_size;
2293 size_t i = pagenum + 1;
2294 for (; i < this.npages; i++)
2295 if (this.pagetable[i] != B_PAGEPLUS)
2296 break;
2297 this.cached_ptr = p;
2298 this.cached_size = (i - pagenum) * PAGESIZE;
2299 return this.cached_size;
2300 }
2301
2302
2303 /**
2304 * Used for sorting pools
2305 */
2306 int opCmp(in Pool other)
2307 {
2308 if (baseAddr < other.baseAddr)
2309 return -1;
2310 else
2311 return cast(int)(baseAddr > other.baseAddr);
2312 }
2313 }
2314
2315
2316 /* ============================ SENTINEL =============================== */
2317
2318
2319 const size_t SENTINEL_PRE = cast(size_t) 0xF4F4F4F4F4F4F4F4UL; // 32 or 64 bits
2320 const ubyte SENTINEL_POST = 0xF5; // 8 bits
2321 const uint SENTINEL_EXTRA = 2 * size_t.sizeof + 1;
2322
2323
2324 size_t* sentinel_size(void *p) { return &(cast(size_t *)p)[-2]; }
2325 size_t* sentinel_pre(void *p) { return &(cast(size_t *)p)[-1]; }
2326 ubyte* sentinel_post(void *p) { return &(cast(ubyte *)p)[*sentinel_size(p)]; }
2327
2328
2329 void sentinel_init(void *p, size_t size)
2330 {
2331 *sentinel_size(p) = size;
2332 *sentinel_pre(p) = SENTINEL_PRE;
2333 *sentinel_post(p) = SENTINEL_POST;
2334 }
2335
2336
2337 void sentinel_Invariant(void *p)
2338 {
2339 if (*sentinel_pre(p) != SENTINEL_PRE ||
2340 *sentinel_post(p) != SENTINEL_POST)
2341 cstdlib.abort();
2342 }
2343
2344
2345 void *sentinel_add(void *p)
2346 {
2347 return p + 2 * size_t.sizeof;
2348 }
2349
2350
2351 void *sentinel_sub(void *p)
2352 {
2353 return p - 2 * size_t.sizeof;
2354 }
2355
2356
2357
2358 /* ============================ C Public Interface ======================== */
2359
2360
2361 private int _termCleanupLevel=1;
2362
2363 extern (C):
2364
2365 /// sets the cleanup level done by gc
2366 /// 0: none
2367 /// 1: fullCollect
2368 /// 2: fullCollect ignoring stack roots (might crash daemonThreads)
2369 /// result !=0 if the value was invalid
2370 int gc_setTermCleanupLevel(int cLevel)
2371 {
2372 if (cLevel<0 || cLevel>2) return cLevel;
2373 _termCleanupLevel=cLevel;
2374 return 0;
2375 }
2376
2377 /// returns the cleanup level done by gc
2378 int gc_getTermCleanupLevel()
2379 {
2380 return _termCleanupLevel;
2381 }
2382
2383 void gc_init()
2384 {
2385 scope (exit) assert (Invariant());
2386 gc = cast(GC*) cstdlib.calloc(1, GC.sizeof);
2387 *gc = GC.init;
2388 initialize();
2389 version (DigitalMars) version(OSX) {
2390 _d_osx_image_init();
2391 }
2392 // NOTE: The GC must initialize the thread library
2393 // before its first collection.
2394 thread_init();
2395 }
2396
2397 void gc_term()
2398 {
2399 assert (Invariant());
2400 if (_termCleanupLevel<1) {
2401 // no cleanup
2402 } else if (_termCleanupLevel==2){
2403 // a more complete cleanup
2404 // NOTE: There may be daemons threads still running when this routine is
2405 // called. If so, cleaning memory out from under then is a good
2406 // way to make them crash horribly.
2407 // Often this probably doesn't matter much since the app is
2408 // supposed to be shutting down anyway, but for example tests might
2409 // crash (and be considerd failed even if the test was ok).
2410 // thus this is not the default and should be enabled by
2411 // I'm disabling cleanup for now until I can think about it some
2412 // more.
2413 //
2414 // not really a 'collect all' -- still scans static data area, roots,
2415 // and ranges.
2416 return locked!(void, () {
2417 gc.no_stack++;
2418 fullcollectshell(false, true); // force block
2419 gc.no_stack--;
2420 })();
2421 } else {
2422 // default (safe) clenup
2423 return locked!(void, () {
2424 fullcollectshell(false, true); // force block
2425 })();
2426 }
2427 }
2428
2429 void gc_enable()
2430 {
2431 return locked!(void, () {
2432 assert (Invariant()); scope (exit) assert (Invariant());
2433 assert (gc.disabled > 0);
2434 gc.disabled--;
2435 })();
2436 }
2437
2438 void gc_disable()
2439 {
2440 return locked!(void, () {
2441 assert (Invariant()); scope (exit) assert (Invariant());
2442 gc.disabled++;
2443 })();
2444 }
2445
2446 void gc_collect()
2447 {
2448 return locked!(void, () {
2449 assert (Invariant()); scope (exit) assert (Invariant());
2450 fullcollectshell();
2451 })();
2452 }
2453
2454
2455 void gc_minimize()
2456 {
2457 return locked!(void, () {
2458 assert (Invariant()); scope (exit) assert (Invariant());
2459 minimize();
2460 })();
2461 }
2462
2463 uint gc_getAttr(void* p)
2464 {
2465 if (p is null)
2466 return 0;
2467 return locked!(uint, () {
2468 assert (Invariant()); scope (exit) assert (Invariant());
2469 Pool* pool = findPool(p);
2470 if (pool is null)
2471 return 0u;
2472 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2473 return getAttr(pool, bit_i);
2474 })();
2475 }
2476
2477 uint gc_setAttr(void* p, uint attrs)
2478 {
2479 if (p is null)
2480 return 0;
2481 return locked!(uint, () {
2482 assert (Invariant()); scope (exit) assert (Invariant());
2483 Pool* pool = findPool(p);
2484 if (pool is null)
2485 return 0u;
2486 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2487 uint old_attrs = getAttr(pool, bit_i);
2488 setAttr(pool, bit_i, attrs);
2489 return old_attrs;
2490 })();
2491 }
2492
2493 uint gc_clrAttr(void* p, uint attrs)
2494 {
2495 if (p is null)
2496 return 0;
2497 return locked!(uint, () {
2498 assert (Invariant()); scope (exit) assert (Invariant());
2499 Pool* pool = findPool(p);
2500 if (pool is null)
2501 return 0u;
2502 auto bit_i = cast(size_t)(p - pool.baseAddr) / 16;
2503 uint old_attrs = getAttr(pool, bit_i);
2504 clrAttr(pool, bit_i, attrs);
2505 return old_attrs;
2506 })();
2507 }
2508
2509 void* gc_malloc(size_t size, uint attrs = 0,
2510 PointerMap ptrmap = PointerMap.init)
2511 {
2512 if (size == 0)
2513 return null;
2514 return locked!(void*, () {
2515 assert (Invariant()); scope (exit) assert (Invariant());
2516 return malloc(size, attrs, ptrmap.bits.ptr);
2517 })();
2518 }
2519
2520 void* gc_calloc(size_t size, uint attrs = 0,
2521 PointerMap ptrmap = PointerMap.init)
2522 {
2523 if (size == 0)
2524 return null;
2525 return locked!(void*, () {
2526 assert (Invariant()); scope (exit) assert (Invariant());
2527 return calloc(size, attrs, ptrmap.bits.ptr);
2528 })();
2529 }
2530
2531 void* gc_realloc(void* p, size_t size, uint attrs = 0,
2532 PointerMap ptrmap = PointerMap.init)
2533 {
2534 return locked!(void*, () {
2535 assert (Invariant()); scope (exit) assert (Invariant());
2536 return realloc(p, size, attrs, ptrmap.bits.ptr);
2537 })();
2538 }
2539
2540 size_t gc_extend(void* p, size_t min_size, size_t max_size)
2541 {
2542 return locked!(size_t, () {
2543 assert (Invariant()); scope (exit) assert (Invariant());
2544 return extend(p, min_size, max_size);
2545 })();
2546 }
2547
2548 size_t gc_reserve(size_t size)
2549 {
2550 if (size == 0)
2551 return 0;
2552 return locked!(size_t, () {
2553 assert (Invariant()); scope (exit) assert (Invariant());
2554 return reserve(size);
2555 })();
2556 }
2557
2558 void gc_free(void* p)
2559 {
2560 if (p is null)
2561 return;
2562 return locked!(void, () {
2563 assert (Invariant()); scope (exit) assert (Invariant());
2564 free(p);
2565 })();
2566 }
2567
2568 void* gc_addrOf(void* p)
2569 {
2570 if (p is null)
2571 return null;
2572 return locked!(void*, () {
2573 assert (Invariant()); scope (exit) assert (Invariant());
2574 Pool* pool = findPool(p);
2575 if (pool is null)
2576 return null;
2577 return pool.findBase(p);
2578 })();
2579 }
2580
2581 size_t gc_sizeOf(void* p)
2582 {
2583 if (p is null)
2584 return 0;
2585 return locked!(size_t, () {
2586 assert (Invariant()); scope (exit) assert (Invariant());
2587 return sizeOf(p);
2588 })();
2589 }
2590
2591 BlkInfo gc_query(void* p)
2592 {
2593 if (p is null)
2594 return BlkInfo.init;
2595 return locked!(BlkInfo, () {
2596 assert (Invariant()); scope (exit) assert (Invariant());
2597 return getInfo(p);
2598 })();
2599 }
2600
2601 // NOTE: This routine is experimental. The stats or function name may change
2602 // before it is made officially available.
2603 GCStats gc_stats()
2604 {
2605 return locked!(GCStats, () {
2606 assert (Invariant()); scope (exit) assert (Invariant());
2607 return getStats();
2608 })();
2609 }
2610
2611 void gc_addRoot(void* p)
2612 {
2613 if (p is null)
2614 return;
2615 return locked!(void, () {
2616 assert (Invariant()); scope (exit) assert (Invariant());
2617 if (gc.roots.append(p) is null)
2618 onOutOfMemoryError();
2619 })();
2620 }
2621
2622 void gc_addRange(void* p, size_t size)
2623 {
2624 if (p is null || size == 0)
2625 return;
2626 return locked!(void, () {
2627 assert (Invariant()); scope (exit) assert (Invariant());
2628 if (gc.ranges.append(Range(p, p + size)) is null)
2629 onOutOfMemoryError();
2630 })();
2631 }
2632
2633 void gc_removeRoot(void* p)
2634 {
2635 if (p is null)
2636 return;
2637 return locked!(void, () {
2638 assert (Invariant()); scope (exit) assert (Invariant());
2639 bool r = gc.roots.remove(p);
2640 assert (r);
2641 })();
2642 }
2643
2644 void gc_removeRange(void* p)
2645 {
2646 if (p is null)
2647 return;
2648 return locked!(void, () {
2649 assert (Invariant()); scope (exit) assert (Invariant());
2650 bool r = gc.ranges.remove(Range(p, null));
2651 assert (r);
2652 })();
2653 }
2654
2655 void* gc_weakpointerCreate(Object r)
2656 {
2657 // weakpointers do their own locking
2658 return weakpointerCreate(r);
2659 }
2660
2661 void gc_weakpointerDestroy(void* wp)
2662 {
2663 // weakpointers do their own locking
2664 weakpointerDestroy(wp);
2665 }
2666
2667 Object gc_weakpointerGet(void* wp)
2668 {
2669 // weakpointers do their own locking
2670 return weakpointerGet(wp);
2671 }
2672
2673 private alias extern(D) void delegate() begin_del;
2674 private alias extern(D) void delegate(int, int) end_del;
2675 void gc_monitor(begin_del begin, end_del end)
2676 {
2677 locked!(void, () {
2678 //casts are a workaround for a dmdfe bug present in 1.064, but fixed in 1.066
2679 gc.collect_begin_cb = cast(typeof(gc.collect_begin_cb)) begin;
2680 gc.collect_end_cb = cast(typeof(gc.collect_end_cb)) end;
2681 })();
2682 }
2683
2684
2685 // vim: set et sw=4 sts=4 :