1 /**
2  * Cylindrical Bessel functions of integral order.
3  *
4  * Copyright: Based on the CEPHES math library, which is
5  *            Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
6  * License:   BSD style: $(LICENSE)
7  * Authors:   Stephen L. Moshier (original C code). Conversion to D by Don Clugston
8  */
9 
10 module tango.math.Bessel;
11 
12 import tango.math.Math;
13 private import tango.math.IEEE;
14 
15 
16 private {   // Rational polynomial approximations to j0, y0, j1, y1.
17 
18 // sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2), z(x) = 1/sqrt(x)
19 // Peak error =  1.80e-20
20 __gshared immutable real j0modulusn[] = [ 0x1.154700ea96e79656p-7, 0x1.72244b6e998cd6fp-4,
21    0x1.6ebccf42e9c19fd2p-1, 0x1.6bd844e89cbd639ap+1, 0x1.e812b377c75ebc96p+2,
22    0x1.46d69ca24ce76686p+3, 0x1.b756f7234cc67146p+2, 0x1.943a7471eaa50ab2p-2
23 ];
24 
25 __gshared immutable real j0modulusd[] = [ 0x1.5b84007c37011506p-7, 0x1.cfe76758639bdab4p-4,
26    0x1.cbfa09bf71bafc7ep-1, 0x1.c8eafb3836f2eeb4p+1, 0x1.339db78060eb706ep+3,
27    0x1.a06530916be8bc7ap+3, 0x1.23bfe7f67a54893p+3,  1.0
28 ];
29 
30 
31 // atan(y0(x)/j0(x)) = x - pi/4 + x P(x**2)/Q(x**2)
32 // Peak error =  2.80e-21. Relative error spread =  5.5e-1
33 __gshared immutable real j0phasen[] = [ -0x1.ccbaf3865bb0985ep-22, -0x1.3a6b175e64bdb82ep-14,
34    -0x1.06124b5310cdca28p-8, -0x1.3cebb7ab09cf1b14p-4, -0x1.00156ed209b43c6p-1,
35    -0x1.78aa9ba4254ca20cp-1
36 ];
37 
38 __gshared immutable real j0phased[] = [ 0x1.ccbaf3865bb09918p-19, 0x1.3b5b0e12900d58b8p-11,
39    0x1.0897373ff9906f7ep-5, 0x1.450a5b8c552ade4ap-1, 0x1.123e263e7f0e96d2p+2,
40    0x1.d82ecca5654be7d2p+2, 1.0
41 ];
42 
43 
44 // j1(x) = (x^2-r0^2)(x^2-r1^2)(x^2-r2^2) x P(x**2)/Q(x**2), 0 <= x <= 9
45 // Peak error =  2e-21
46 __gshared immutable real j1n[] = [ -0x1.2f494fa4e623b1bp+58, 0x1.8289f0a5f1e1a784p+52,
47   -0x1.9d773ee29a52c6d8p+45, 0x1.e9394ff57a46071cp+37, -0x1.616c7939904a359p+29,
48    0x1.424414b9ee5671eap+20, -0x1.6db34a9892d653e6p+10, 0x1.dcd7412d90a0db86p-1,
49    -0x1.1444a1643199ee5ep-12
50 ];
51 
52 __gshared immutable real j1d[] = [ 0x1.5a1e0a45eb67bacep+75, 0x1.35ee485d62f0ccbap+68,
53    0x1.11ee7aad4e4bcd8p+60, 0x1.3adde5dead800244p+51, 0x1.041c413dfbab693p+42,
54    0x1.4066d12193fcc082p+32, 0x1.24309d0dc2c4d42ep+22, 0x1.7115bea028dd75f2p+11,
55    1.0
56 ];
57 
58 // sqrt(j1^2(1/x^2) + y1^2(1/x^2)) = z P(z**2)/Q(z**2), z(x) = 1/sqrt(x)
59 // Peak error =  1.35e=20, Relative error spread =  9.9e0
60 __gshared immutable real [] j1modulusn = [ 0x1.059262020bf7520ap-6, 0x1.012ffc4d1f5cdbc8p-3,
61    0x1.03c17ce18cae596p+0, 0x1.6e0414a7114ae3ccp+1, 0x1.cb047410d229cbc4p+2,
62    0x1.4385d04bb718faaap+1, 0x1.914074c30c746222p-2, -0x1.42abe77f6b307aa6p+2
63 ];
64 
65 __gshared immutable real [] j1modulusd = [ 0x1.47d4e6ad98d8246ep-6, 0x1.42562f48058ff904p-3,
66    0x1.44985e2af35c6f9cp+0, 0x1.c6f4a03469c4ef6cp+1, 0x1.1829a060e8d604cp+3,
67    0x1.44111c892f9cc84p+1, -0x1.d7c36d7f1e5aef6ap-1, -0x1.8eeafb1ac81c4c06p+2,
68    1.0
69 ];
70 
71 // atan(y1(x)/j1(x))  =  x - 3pi/4 + z P(z**2)/Q(z**2), z(x) = 1/x
72 // Peak error =  4.83e-21. Relative error spread =  1.9e0
73 __gshared immutable real [] j1phasen = [ 0x1.ca9f612d83aaa818p-20, 0x1.2e82fcfb7d0fee9ep-12,
74    0x1.e28858c1e947506p-7, 0x1.12b8f96e5173d20ep-2, 0x1.965e6a013154c0ap+0,
75    0x1.0156a25eaa0dd78p+1
76 ];
77 
78 __gshared immutable real [] j1phased = [ 0x1.31bf961e57c71ae4p-18, 0x1.9464d8f2abf750a6p-11,
79    0x1.446a786bac2131fp-5, 0x1.76caa8513919873cp-1, 0x1.2130b56bc1a563e4p+2,
80    0x1.b3cc1a865259dfc6p+2, 0x1p+0
81 ];
82 
83 }
84 
85 /***
86  *  Bessel function of order zero
87  *
88  * Returns Bessel function of first kind, order zero of the argument.
89  */
90 
91  /* The domain is divided into the intervals [0, 9] and
92  * (9, infinity). In the first interval the rational approximation
93  * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
94  * where r, s, t are the first three zeros of the function.
95  * In the second interval the expansion is in terms of the
96  * modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase  P0(x)
97  * = atan(Y0(x)/J0(x)).  M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
98  * The approximation to J0 is M0 * cos(x -  pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
99  */
100 real cylBessel_j0(real x)
101 {
102 
103 // j0(x) = (x^2-JZ1)(x^2-JZ2)(x^2-JZ3)P(x**2)/Q(x**2), 0 <= x <= 9
104 // Peak error =  8.49e-22. Relative error spread =  2.2e-3
105 __gshared immutable real j0n[] = [ -0x1.3e8ff72b890d72d8p+59, 0x1.cc86e3755a4c803p+53,
106  -0x1.0ea6f5bac6623616p+47, 0x1.532c6d94d36f2874p+39, -0x1.ef25a232f6c00118p+30,
107    0x1.aa0690536c11fc2p+21, -0x1.94e67651cc57535p+11,  0x1.4bfe47ac8411eeb2p+0
108 ];
109 
110 __gshared immutable real j0d[] = [ 0x1.0096dec5f6560158p+73, 0x1.11705db14995fb9cp+66,
111    0x1.220a41c3daaa7a58p+58, 0x1.93c6b48d196c1082p+49, 0x1.9814684a10dbfda2p+40,
112    0x1.36f20ec527fccda4p+31, 0x1.634596b9247fc34p+21, 0x1.1d3eb73f90657bfcp+11,
113    1.0
114 ];
115     real xx, y, z, modulus, phase;
116 
117     xx = x * x;
118     if ( xx < 81.0L ) {
119         __gshared immutable real [] JZ = [5.783185962946784521176L,
120             30.47126234366208639908L, 7.488700679069518344489e1L];
121         y = (xx - JZ[0]) * (xx - JZ[1]) * (xx - JZ[2]);
122         y *= rationalPoly( xx, j0n, j0d);
123         return y;
124     }
125 
126     y = fabs(x);
127     xx = 1.0/xx;
128     phase = rationalPoly( xx, j0phasen, j0phased);
129 
130     z = 1.0/y;
131     modulus = rationalPoly( z, j0modulusn, j0modulusd);
132 
133     y = modulus * cos( y -  PI_4 + z*phase) / sqrt(y);
134     return y;
135 }
136 
137 /**
138  * Bessel function of the second kind, order zero
139  * Also known as the cylindrical Neumann function, order zero.
140  *
141  * Returns Bessel function of the second kind, of order
142  * zero, of the argument.
143  */
144 real cylBessel_y0(real x)
145 {
146 /* The domain is divided into the intervals [0, 5>, [5,9> and
147  * [9, infinity). In the first interval a rational approximation
148  * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
149  *
150  * In the second interval, the approximation is
151  *     (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
152  * where p, q, r, s are zeros of y0(x).
153  *
154  * The third interval uses the same approximations to modulus
155  * and phase as j0(x), whence y0(x) = modulus * sin(phase).
156  */
157 
158 // y0(x) = 2/pi * log(x) * j0(x) + P(z**2)/Q(z**2), 0 <= x <= 5
159 // Peak error =  8.55e-22. Relative error spread =  2.7e-1
160 __gshared immutable real y0n[] = [ -0x1.068026b402e2bf7ap+54, 0x1.3a2f7be8c4c8a03ep+55,
161  -0x1.89928488d6524792p+51, 0x1.3e3ea2846f756432p+46, -0x1.c8be8d9366867c78p+39,
162    0x1.43879530964e5fbap+32, -0x1.bee052fef72a5d8p+23, 0x1.e688c8fe417c24d8p+13
163 ];
164 
165 __gshared immutable real y0d[] = [ 0x1.bc96c5351e564834p+57, 0x1.6821ac3b4c5209a6p+51,
166    0x1.27098b571836ce64p+44, 0x1.41870d2a9b90aa76p+36, 0x1.00394fd321f52f48p+28,
167    0x1.317ce3b16d65b27p+19, 0x1.0432b36efe4b20aep+10, 1.0
168 ];
169 
170 // y0(x) = (x-Y0Z1)(x-Y0Z2)(x-Y0Z3)(x-Y0Z4)P(x)/Q(x), 4.5 <= x <= 9
171 // Peak error =  2.35e-20. Relative error spread =  7.8e-13
172 __gshared immutable real y059n[] = [ -0x1.0fce17d26a21f218p+19, -0x1.c6fc144765fdfaa8p+16,
173    0x1.3e20237c53c7180ep+19, 0x1.7d14055ff6a493c4p+17, 0x1.b8b694729689d1f4p+12,
174    -0x1.1e24596784b6c5cp+12, 0x1.35189cb3ece7ab46p+6, 0x1.9428b3f406b4aa08p+4,
175    -0x1.791187b68dd4240ep+0, 0x1.8417216d568b325ep-6
176 ];
177 
178 __gshared immutable real y059d[] = [ 0x1.17af71a3d4167676p+30, 0x1.a36abbb668c79d6cp+31,
179  -0x1.4ff64a14ed73c4d6p+29, 0x1.9d427af195244ffep+26, -0x1.4e85bbbc8d2fd914p+23,
180   0x1.ac59b523ae0bd16cp+19, -0x1.8ebda33eaac74518p+15, 0x1.16194a051cd55a12p+11,
181    -0x1.f2d714ab48d1bd7ep+5, 1.0
182 ];
183 
184 
185     real xx, y, z, modulus, phase;
186 
187     if ( x < 0.0 ) return -real.max;
188     xx = x * x;
189     if ( xx < 81.0L ) {
190         if ( xx < 20.25L ) {
191             y = M_2_PI * log(x) * cylBessel_j0(x);
192             y += rationalPoly( xx, y0n, y0d);
193         } else {
194             __gshared immutable real [] Y0Z = [3.957678419314857868376e0L, 7.086051060301772697624e0L,
195                 1.022234504349641701900e1L, 1.336109747387276347827e1L];
196             y = (x - Y0Z[0])*(x - Y0Z[1])*(x - Y0Z[2])*(x - Y0Z[3]);
197             y *= rationalPoly( x, y059n, y059d);
198         }
199         return y;
200     }
201 
202     y = fabs(x);
203     xx = 1.0/xx;
204     phase = rationalPoly( xx, j0phasen, j0phased);
205 
206     z = 1.0/y;
207     modulus = rationalPoly( z, j0modulusn, j0modulusd);
208 
209     y = modulus * sin( y -  PI_4 + z*phase) / sqrt(y);
210     return y;
211 }
212 
213 /**
214  *  Bessel function of order one
215  *
216  * Returns Bessel function of order one of the argument.
217  */
218 real cylBessel_j1(real x)
219 {
220 /* The domain is divided into the intervals [0, 9] and
221  * (9, infinity). In the first interval the rational approximation
222  * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) x P8(x^2) / Q8(x^2),
223  * where r, s, t are the first three zeros of the function.
224  * In the second interval the expansion is in terms of the
225  * modulus M1(x) = sqrt(J1(x)^2 + Y1(x)^2) and phase  P1(x)
226  * = atan(Y1(x)/J1(x)).  M1 is approximated by sqrt(1/x)P7(1/x)/Q8(1/x).
227  * The approximation to j1 is M1 * cos(x -  3 pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
228  */
229 
230     real xx, y, z, modulus, phase;
231 
232     xx = x * x;
233     if ( xx < 81.0L ) {
234         __gshared immutable real [] JZ = [1.46819706421238932572e1L,
235             4.92184563216946036703e1L, 1.03499453895136580332e2L];
236         y = (xx - JZ[0]) * (xx - JZ[1]) * (xx - JZ[2]);
237         y *= x * poly( xx, j1n) / poly( xx, j1d);
238         return y;
239     }
240     y = fabs(x);
241     xx = 1.0/xx;
242     phase = rationalPoly( xx, j1phasen, j1phased);
243     z = 1.0/y;
244     modulus = rationalPoly( z, j1modulusn, j1modulusd);
245 
246     enum real M_3PI_4 = 3 * PI_4;
247 
248     y = modulus * cos( y -  M_3PI_4 + z*phase) / sqrt(y);
249     if( x < 0 )
250         y = -y;
251     return y;
252 }
253 
254 /**
255  *  Bessel function of the second kind, order zero
256  *
257  * Returns Bessel function of the second kind, of order
258  * zero, of the argument.
259  */
260 real cylBessel_y1(real x)
261 in {
262     assert(x>=0.0);
263     // TODO: should it return -infinity for x<0 ?
264 }
265 body {
266 /* The domain is divided into the intervals [0, 4.5>, [4.5,9> and
267  * [9, infinity). In the first interval a rational approximation
268  * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
269  *
270  * In the second interval, the approximation is
271  *     (x - p)(x - q)(x - r)(x - s)P9(x)/Q10(x)
272  * where p, q, r, s are zeros of y1(x).
273  *
274  * The third interval uses the same approximations to modulus
275  * and phase as j1(x), whence y1(x) = modulus * sin(phase).
276  *
277  * ACCURACY:
278  *
279  *  Absolute error, when y0(x) < 1; else relative error:
280  *
281  * arithmetic   domain     # trials      peak         rms
282  *    IEEE      0, 30       36000       2.7e-19     5.3e-20
283  *
284  */
285     
286 // y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + R(x^2) z P(z**2)/Q(z**2)
287 // 0 <= x <= 4.5, z(x) = x
288 // Peak error =  7.25e-22. Relative error spread =  4.5e-2
289 __gshared immutable real [] y1n = [ -0x1.32cab2601090742p+54, 0x1.432ceb7a8eaeff16p+52,
290    -0x1.bcebec5a2484d3fap+47, 0x1.cc58f3cb54d6ac66p+41, -0x1.b1255e154d0eec0ep+34,
291    0x1.7a337df43298a7c8p+26, -0x1.f77a1afdeff0b62cp+16
292 ];
293 
294 __gshared immutable real [] y1d = [ 0x1.8733bcfd7236e604p+56, 0x1.5af412c672fd18d4p+50,
295    0x1.394ba130685755ep+43, 0x1.7b3321523b24afcp+35, 0x1.52946dac22f61d0cp+27,
296    0x1.c9040c6053de5318p+18, 0x1.be5156e6771dba34p+9, 1.0
297 ];
298 
299 
300 // y1(x) = (x-YZ1)(x-YZ2)(x-YZ3)(x-YZ4)R(x) P(z)/Q(z)
301 // z(x) = x, 4.5 <= x <= 9
302 // Peak error =  3.27e-22. Relative error spread =  4.5e-2
303 __gshared immutable real y159n[] = [ 0x1.2fed87b1e60aa736p+18, -0x1.1a2b18cdb2d1ec5ep+20,
304    -0x1.b848827f47b47022p+20, -0x1.b2e422305ea19a86p+20,
305    -0x1.e3f82ac304534676p+16, 0x1.47a2cb5e852d657ep+14, 0x1.81b2fc6e44d7be8p+12,
306    -0x1.cd861d7b090dd22ep+9, 0x1.588897d683cbfbe2p+5, -0x1.5c7feccf76856bcap-1
307 ];
308 
309 __gshared immutable real y159d[] = [ 0x1.9b64f2a4d5614462p+26, -0x1.17501e0e38db675ap+30,
310    0x1.fe88b567c2911c1cp+31, -0x1.86b1781e04e748d4p+29, 0x1.ccd7d4396f2edbcap+26,
311    -0x1.694110c682e5cbcap+23, 0x1.c20f7005b88c789ep+19, -0x1.983a5b4275ab7da8p+15,
312    0x1.17c60380490fa1fcp+11, -0x1.ee84c254392634d8p+5, 1.0
313 ];
314     
315     real xx, y, z, modulus, phase;
316 
317     z = 1.0/x;
318     xx = x * x;
319     if ( xx < 81.0L ) {
320         if ( xx < 20.25L ) {
321             y = M_2_PI * (log(x) * cylBessel_j1(x) - z);
322             y += x * poly( xx, y1n) / poly( xx, y1d);
323         } else {
324             __gshared immutable real [] Y1Z =
325             [   2.19714132603101703515e0L, 5.42968104079413513277e0L,
326                 8.59600586833116892643e0L, 1.17491548308398812434e1L];
327             y = (x - Y1Z[0])*(x - Y1Z[1])*(x - Y1Z[2])*(x - Y1Z[3]);
328             y *= rationalPoly( x, y159n, y159d);
329         }
330         return y;
331     }
332     xx = 1.0/xx;
333     phase = rationalPoly( xx, j1phasen, j1phased);
334     modulus = rationalPoly( z, j1modulusn, j1modulusd);
335 
336     enum real M_3PI_4 = 3 * PI_4;
337 
338     z = modulus * sin( x -  M_3PI_4 + z*phase) / sqrt(x);
339     return z;
340 }
341 
342 /**
343  *  Bessel function of integer order
344  *
345  * Returns Bessel function of order n, where n is a
346  * (possibly negative) integer.
347  *
348  * The ratio of jn(x) to j0(x) is computed by backward
349  * recurrence.  First the ratio jn/jn-1 is found by a
350  * continued fraction expansion.  Then the recurrence
351  * relating successive orders is applied until j0 or j1 is
352  * reached.
353  *
354  * If n = 0 or 1 the routine for j0 or j1 is called
355  * directly.
356  *
357  * BUGS: Not suitable for large n or x.
358  *
359  */
360 real cylBessel_jn(int n, real x )
361 {
362     real pkm2, pkm1, pk, xk, r, ans;
363     int k, sign;
364 
365     if ( n < 0 ) {
366         n = -n;
367         if ( (n & 1) == 0 )  /* -1**n */
368             sign = 1;
369         else
370             sign = -1;
371     } else
372         sign = 1;
373 
374     if ( x < 0.0L ) {
375         if ( n & 1 )
376             sign = -sign;
377         x = -x;
378     }
379 
380     if ( n == 0 )
381         return sign * cylBessel_j0(x);
382     if ( n == 1 )
383         return sign * cylBessel_j1(x);
384     // BUG: This code from Cephes is fast, but it makes the Wronksian test fail.
385     // (accuracy is 8 bits lower).
386     // But, the problem might lie in the n = 2 case in cylBessel_yn().
387 //    if ( n == 2 )
388 //        return sign * (2.0L * cylBessel_j1(x) / x  -  cylBessel_j0(x));
389 
390     if ( x < real.epsilon )
391         return 0;
392 
393     /* continued fraction */
394     k = 53;
395     pk = 2 * (n + k);
396     ans = pk;
397     xk = x * x;
398 
399     do {
400         pk -= 2.0L;
401         ans = pk - (xk/ans);
402     } while( --k > 0 );
403     ans = x/ans;
404 
405     /* backward recurrence */
406 
407     pk = 1.0L;
408     pkm1 = 1.0L/ans;
409     k = n-1;
410     r = 2 * k;
411 
412     do  {
413         pkm2 = (pkm1 * r  -  pk * x) / x;
414         pk = pkm1;
415         pkm1 = pkm2;
416         r -= 2.0L;
417     } while( --k > 0 );
418 
419     if ( fabs(pk) > fabs(pkm1) )
420         ans = cylBessel_j1(x)/pk;
421     else
422         ans = cylBessel_j0(x)/pkm1;
423     return sign * ans;
424 }
425 
426 /**
427  *  Bessel function of second kind of integer order
428  *
429  * Returns Bessel function of order n, where n is a
430  * (possibly negative) integer.
431  *
432  * The function is evaluated by forward recurrence on
433  * n, starting with values computed by the routines
434  * cylBessel_y0() and cylBessel_y1().
435  *
436  * If n = 0 or 1 the routine for cylBessel_y0 or cylBessel_y1 is called
437  * directly.
438  */
439 real cylBessel_yn(int n, real x)
440 in {
441     assert(x>0); // TODO: should it return -infinity for x<=0 ?
442 }
443 body {
444     real an, r;
445     int k, sign;
446 
447     if ( n < 0 ) {
448         n = -n;
449         if ( (n & 1) == 0 ) /* -1**n */
450             sign = 1;
451         else
452             sign = -1;
453     } else
454         sign = 1;
455 
456     if ( n == 0 )
457         return sign * cylBessel_y0(x);
458     if ( n == 1 )
459         return sign * cylBessel_y1(x);
460 
461     /* forward recurrence on n */
462     real anm2 = cylBessel_y0(x);
463     real anm1 = cylBessel_y1(x);
464     k = 1;
465     r = 2 * k;
466     do {
467         an = r * anm1 / x  -  anm2;
468         anm2 = anm1;
469         anm1 = an;
470         r += 2.0L;
471         ++k;
472     } while( k < n );
473     return sign * an;
474 }
475 
476 private {
477 // Evaluate Chebyshev series
478 double evalCheby(double x, const(double []) poly)
479 {
480     double b0, b1, b2;
481     
482     b0 = poly[$-1];
483     b1 = 0.0;
484     for (int i=cast(int)poly.length-1; i>=0; --i) {
485         b2 = b1;
486         b1 = b0;
487         b0 = x * b1 - b2 + poly[i];
488     }
489     return 0.5*(b0-b2);
490 }
491 }
492 
493 /**
494  *  Modified Bessel function of order zero
495  *
496  * Returns modified Bessel function of order zero of the
497  * argument.
498  *
499  * The function is defined as i0(x) = j0( ix ).
500  *
501  * The range is partitioned into the two intervals [0,8] and
502  * (8, infinity).  Chebyshev polynomial expansions are employed
503  * in each interval.
504  */
505 double cylBessel_i0(double x)
506 {
507     // Chebyshev coefficients for exp(-x) I0(x) in the interval [0,8].
508     // lim(x->0){ exp(-x) I0(x) } = 1.
509     __gshared immutable double [] A = [    0x1.5a84e9035a22ap-1,  -0x1.37febc057cd8dp-2,
510      0x1.5f7ac77ac88c0p-3,  -0x1.84b70342d06eap-4,   0x1.93e8acea8a32dp-5,
511     -0x1.84e9ef121b6f0p-6,   0x1.59961f3dde3ddp-7,  -0x1.1b65e201aa849p-8,
512      0x1.adc758a12100ep-10, -0x1.2e2fd1f15eb52p-11,  0x1.8b51b74107cabp-13,
513     -0x1.e2b2659c41d5ap-15,  0x1.13f58be9a2859p-16, -0x1.2866fcba56427p-18,
514      0x1.2bf24978cf4acp-20, -0x1.1ec638f227f8dp-22,  0x1.03b769d4d6435p-24,
515     -0x1.beaf68c0b30abp-27,  0x1.6d903a454cb34p-29, -0x1.1d4fe13ae9556p-31,
516      0x1.a98becc743c10p-34, -0x1.2fc957a946abcp-36,  0x1.9fe2fe19bd324p-39,
517     -0x1.1164c62ee1af0p-41,  0x1.59b464b262627p-44, -0x1.a5022c297fbebp-47,
518      0x1.ee6d893f65ebap-50, -0x1.184eb721ebbb4p-52,  0x1.33362977da589p-55,
519     -0x1.45cb72134d0efp-58 ];    
520     
521     // Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
522     // in the inverted interval [8,infinity].    
523     // lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
524     __gshared immutable double [] B = [      0x1.9be62aca809cbp-1,   0x1.b998ca2e59049p-9,
525        0x1.20fa378999e52p-14,  0x1.8412bc101c586p-19,  0x1.b8007d9cd616ep-23,
526        0x1.8569280d6d56dp-26,  0x1.d2c64a9225b87p-29,  0x1.0f9ccc0f46f75p-31,
527        0x1.a24feabe8004fp-37, -0x1.1511d08397425p-35, -0x1.d0fd7357e7bf2p-37,
528       -0x1.f904303178d66p-40,  0x1.94347fa268cecp-41,  0x1.b1c8c6b83c073p-42,
529        0x1.156ff0d5fc545p-46, -0x1.75d99cf68bb32p-45, -0x1.583fe7e65629ap-47,
530        0x1.12a919094e6d7p-48,  0x1.fee7da3eafb1fp-50, -0x1.8aee7d908de38p-52,
531       -0x1.4600babd21fe4p-52,  0x1.3f3dd076041cdp-55,  0x1.9be1812d98421p-55,
532       -0x1.646da66119130p-58, -0x1.0adb754ca8b19p-57 ];
533       
534     double y;
535     
536     if (x < 0)
537         x = -x;
538     if (x <= 8.0) {
539         y = (x/2.0) - 2.0;
540         return exp(x) * evalCheby( y, A);
541     }    
542     return exp(x) * evalCheby( 32.0/x - 2.0, B) / sqrt(x);
543 }
544 
545 /**
546  *  Modified Bessel function of order one
547  *
548  * Returns modified Bessel function of order one of the
549  * argument.
550  *
551  * The function is defined as i1(x) = -i j1( ix ).
552  *
553  * The range is partitioned into the two intervals [0,8] and
554  * (8, infinity).  Chebyshev polynomial expansions are employed
555  * in each interval.
556 */
557 double cylBessel_i1(double x)
558 {     
559     __gshared immutable double [] A = [       0x1.02a63724a7ffap-2,  -0x1.694d10469192ep-3,
560         0x1.a46dad536f53cp-4,  -0x1.b1bbc537c9ebcp-5,   0x1.951e3e7bb2349p-6,
561        -0x1.5a29f7913a26ap-7,   0x1.1065349d3a1b4p-8,  -0x1.8cc620b3cd4a4p-10,
562         0x1.0c95db6c6df7dp-11, -0x1.533cad3d694fep-13,  0x1.911b542c70d0bp-15,
563        -0x1.bd5f9b8debbcfp-17,  0x1.d1c4ed511afc5p-19, -0x1.cc0798363992ap-21,
564         0x1.ae344b347d108p-23, -0x1.7dd3e24b8c3e8p-25,  0x1.4258e02395010p-27,
565        -0x1.0361b28ea67e6p-29,  0x1.8ea34b43fdf6cp-32, -0x1.2510397eb07dep-34,
566         0x1.9cee2b21d3154p-37, -0x1.173835fb70366p-39,  0x1.6af784779d955p-42,
567        -0x1.c628e1c8f0b3bp-45,  0x1.11d7f0615290cp-47, -0x1.3eaaa7e0d1573p-50,
568         0x1.663e3e593bfacp-53, -0x1.857d0c38a0576p-56,  0x1.99f2a0c3c4014p-59
569     ];
570         
571     // Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
572     // in the inverted interval [8,infinity].
573     // lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
574     __gshared immutable double [] B = [       0x1.8ea18b55b1514p-1,  -0x1.3fda053fcdb4cp-7,
575        -0x1.cfd7f804aa9a6p-14, -0x1.048df49ca0373p-18, -0x1.0dbfd2e9e5443p-22,
576        -0x1.c415394bb46c1p-26, -0x1.0790b9ad53528p-28, -0x1.334ca5423dd80p-31,
577        -0x1.4dcf9d4504c0cp-36,  0x1.1e1a1f1587865p-35,  0x1.f101f653c457bp-37,
578         0x1.1e7d3f6439fa3p-39, -0x1.953e1076ab493p-41, -0x1.cbc458e73e255p-42,
579        -0x1.7a9482e6d22a0p-46,  0x1.80d3c26b3281ep-45,  0x1.776e1762d31e8p-47,
580        -0x1.12db5138afbc7p-48, -0x1.0efcd8bc4d22ap-49,  0x1.7d68e5f04a2d1p-52,
581         0x1.55915fceb588ap-52, -0x1.2806c9c773320p-55, -0x1.acea3b2532277p-55,
582         0x1.45b8aea87b950p-58,  0x1.1556db352e8e6p-57  ];
583 
584     double y, z;
585     
586     z = fabs(x);
587     if( z <= 8.0 ) {
588         y = (z/2.0) - 2.0;
589         z = evalCheby( y, A ) * z * exp(z);
590     } else {
591         z = exp(z) * evalCheby( 32.0/z - 2.0, B ) / sqrt(z);
592     }
593     if (x < 0.0 )
594         z = -z;
595     return z;
596 }
597 
598 debug(UnitTest) {
599 
600 unittest {
601   // argument, result1, result2, derivative. Correct result is result1+result2.
602 __gshared real[4][] j0_test_points = [
603     [8.0L, 1.71646118164062500000E-1L, 4.68897349140609086941E-6L, -2.34636346853914624381E-1L],
604     [4.54541015625L, -3.09783935546875000000E-1L, 7.07472668157686463367E-6L, 2.42993657373627558460E-1L],
605     [2.85711669921875L, -2.07901000976562500000E-1L, 1.15237285263902751582E-5L, -3.90402225324501311651E-1L],
606     [2.0L, 2.23876953125000000000E-1L, 1.38260162356680518275E-5L, -5.76724807756873387202E-1L],
607     [1.16415321826934814453125e-10L, 9.99984741210937500000E-1L, 1.52587890624999966119E-5L,
608         9.99999999999999999997E-1L],
609     [-2.0L, 2.23876953125000000000E-1L,
610         1.38260162356680518275E-5L, 5.76724807756873387202E-1L]
611 ];
612 
613 __gshared real[4][] y0_test_points = [
614     [ 8.0L, 2.23510742187500000000E-1L, 1.07472000662205273234E-5L, 1.58060461731247494256E-1L],
615     [4.54541015625L, -2.08114624023437500000E-1L, 1.45018823856668874574E-5L, -2.88887645307401250876E-1L],
616     [2.85711669921875L, 4.20303344726562500000E-1L, 1.32781607563122276008E-5L, -2.82488638474982469213E-1],
617     [2.0L, 5.10360717773437500000E-1L, 1.49548763076195966066E-5L, 1.07032431540937546888E-1L],
618     [1.16415321826934814453125e-10L, -1.46357574462890625000E1L, 3.54110537011061127637E-6L,
619         5.46852220461145271913E9L]
620 ];
621 
622 __gshared real[4][] j1_test_points = [
623   [ 8.0L, 2.34634399414062500000E-1L, 1.94743985212438127665E-6L,1.42321263780814578043E-1],
624   [4.54541015625L, -2.42996215820312500000E-1L, 2.55844668494153980076E-6L, -2.56317734136211337012E-1],
625   [2.85711669921875L, 3.90396118164062500000E-1L, 6.10716043881165077013E-6L, -3.44531507106757980441E-1L],
626   [2.0L, 5.76721191406250000000E-1L, 3.61635062338720244824E-6L,  -6.44716247372010255494E-2L],
627   [1.16415321826934814453125e-10L, 5.820677273504770710133016109466552734375e-11L,
628    8.881784197001251337312921818461805735896e-16L, 4.99999999999999999997E-1L],
629   [-2.0L, -5.76721191406250000000E-1L, -3.61635062338720244824E-6L, -6.44716247372010255494E-2L]
630 ];
631 
632 __gshared real[4][] y1_test_points = [
633     [8.0L, -1.58065795898437500000E-1L,
634         5.33416719000574444473E-6L, 2.43279047103972157309E-1L],
635     [4.54541015625L, 2.88879394531250000000E-1L,
636         8.25077615125087585195E-6L, -2.71656024771791736625E-1L],
637     [2.85711669921875L, 2.82485961914062500000E-1,
638         2.67656091996921314433E-6L, 3.21444694221532719737E-1],
639     [2.0L, -1.07040405273437500000E-1L,
640         7.97373249995311162923E-6L, 5.63891888420213893041E-1],
641     [1.16415321826934814453125e-10L, -5.46852220500000000000E9L,
642         3.88547280871200700671E-1L, 4.69742480525120196168E19L]
643 ];
644 
645     foreach(real[4] t; j0_test_points) {
646         assert(feqrel(cylBessel_j0(t[0]), t[1]+t[2]) >=real.mant_dig-3);
647     }
648 
649     foreach(real[4] t; y0_test_points) {
650         assert(feqrel(cylBessel_y0(t[0]), t[1]+t[2]) >=real.mant_dig-4);
651     }
652     foreach(real[4] t; j1_test_points) {
653         assert(feqrel(cylBessel_j1(t[0]), t[1]+t[2]) >=real.mant_dig-3);
654     }
655 
656     foreach(real[4] t; y1_test_points) {
657         assert(feqrel(cylBessel_y1(t[0]), t[1]+t[2]) >=real.mant_dig-4);
658     }
659 
660     // Values from MS Excel, of doubtful accuracy.
661     assert(fabs(-0.060_409_940_421_649 - cylBessel_j0(173.5)) < 0.000_000_000_1);
662     assert(fabs(-0.044_733_447_576_5866 - cylBessel_y0(313.25)) < 0.000_000_000_1);
663     assert(fabs(0.00391280088318945 - cylBessel_j1(123.25)) < 0.000_000_000_1);
664     assert(fabs(-0.0648628570878951 - cylBessel_j1(-91)) < 0.000_000_000_1);
665     assert(fabs(-0.0759578537652805 - cylBessel_y1(107.75)) < 0.000_000_000_1);
666   
667     assert(fabs(13.442_456_516_6771-cylBessel_i0(4.2)) < 0.000_001);    
668     assert(fabs(1.6500020842093e+28-cylBessel_i0(-68)) < 0.000_001e+28);
669     assert(fabs(4.02746515903173e+10-cylBessel_i1(27)) < 0.000_001e+10);
670     assert(fabs(-2.83613942886386e-02-cylBessel_i1(-0.0567)) < 0.000_000_001e-2);
671 }
672 }
673 
674 debug(UnitTest) {
675 
676 unittest {
677 
678     // Wronksian test for Bessel functions
679     void testWronksian(int n, real x)
680     {
681       real Jnp1 = cylBessel_jn(n + 1, x);
682       real Jmn = cylBessel_jn(-n, x);
683       real Jn = cylBessel_jn(n, x);
684       real Jmnp1 = cylBessel_jn(-(n + 1), x);
685       /* This should be trivially zero.  */
686       assert( fabs(Jnp1 * Jmn + Jn * Jmnp1) == 0);
687       if (x < 0.0) {
688           x = -x;
689           Jn = cylBessel_jn(n, x);
690           Jnp1 = cylBessel_jn(n + 1, x);
691       }
692       real Yn = cylBessel_yn(n, x);
693       real Ynp1 = cylBessel_yn(n + 1, x);
694       /* The Wronksian.  */
695       real w1 = Jnp1 * Yn - Jn * Ynp1;
696       /* What the Wronksian should be. */
697       real w2 = 2.0 / (PI * x);
698 
699       real reldif = feqrel(w1, w2);
700       assert(reldif >= real.mant_dig-6);
701     }
702 
703   real delta;
704   int n, i, j;
705 
706   delta = 0.6 / PI;
707   for (n = -30; n <= 30; n++) {
708     real x = -30.0;
709     while (x < 30.0)    {
710         testWronksian (n, x);
711         x += delta;
712     }
713     delta += .00123456;
714   }
715   assert(cylBessel_jn(20, 1e-80)==0);
716   
717       // NaN propagation
718     assert(isIdentical(cylBessel_i1(NaN(0xDEF)), NaN(0xDEF)));
719     assert(isIdentical(cylBessel_i0(NaN(0x846)), NaN(0x846)));
720 
721 }
722 
723 }